A World Without Hunger

Written by Matt Grobis

Safe, nutritious, and sufficient food, all year, for all people: the United Nation’s second Sustainable Development Goal aims to transform the world’s agriculture and distribution of food by 2030. With 800 million people suffering from hunger – more than 10% of the world’s population – food and agriculture are key to achieving the entire set of sustainable development goals.

Currently, there exists enough food to supply every person on the planet with a nutritious diet. Yet, large imbalances in access to this food also exist. This is often due to the cycle of poverty: people in poverty cannot afford nutritious food, which weakens them and then limits their ability to earn enough money to escape poverty. The results can be devastating. Poor nutrition is responsible for nearly 45% of deaths in children under 5, as well as causing a quarter of the world’s children to be stunted, or unable to develop normally.

Feeding future generations is similarly troubling. We have dedicated approximately 11% of the world’s land surface to agriculture (1.5 billion hectares), but to feed an expected 9 billion people in 2050, we will have to expand our global food production by 60%. Where will this land come from? We can work to improve crop yield from existing land, but the Food and Agriculture Organization (FAO) cautions that in many cases, local socioeconomic conditions “will not favor the promotion of the technological changes required to ensure the sustainable intensification of land use.” In other words, we can increase our food yield, but do we have the infrastructure in place to do it sustainably?

These are formidable challenges that require fast, efficient, and long-lasting solutions. By no exaggeration, the wellbeing and lives of billions of people – both present and future – depend on the actions taken to address hunger. The UN has therefore made ending world hunger a priority. “We can no longer look at food, livelihoods and the management of natural resources separately,” the FAO wrote in their 2016 bulletin Food and Agriculture. “A focus on rural development and investment in agriculture – crops, livestock, forestry, fisheries and aquaculture – are powerful tools to end poverty and hunger, and bring about sustainable development.”

A World Without Hunger
Mud stoves in Darfur, Sudan. Promoted by the Food and Agriculture Organization of the United Nations since the 1990s, these stoves decrease the need for fuelwood, a limited resource that can be dangerous to gather. Photo credit: plancanada.ca

How can we address problems as pervasive as hunger, when those problems are intimately linked with Earth’s other greatest challenges, such as poverty and climate change? For the FAO, the answer is to find solutions that address as many of these challenges simultaneously. In Darfur, Sudan, for example, the FAO is working to introduce fuel-efficient stoves that reduce the need for fuelwood, the principal source of energy that is becoming an increasingly limited natural resource. Women must travel far from home to collect fuelwood, which decreases the time they can invest in childcare, work, or education while also exposing themselves to the risk of physical or sexual violence. Mud stoves, on the other hand, require less fuelwood and produce no smoke. The local production of these stoves generates income for women.

“Tackling hunger and malnutrition is not only about boosting food production, but also to do with increasing incomes, creating resilient food systems and strengthening markets so that people can access safe and nutritious food even if a crisis prevents them from growing enough themselves.”
– Food and Agriculture Organization of the United Nations, Food and Agriculture

For Darfur, fuel-efficient stoves not only improve food security, hence addressing the UN’s second sustainable development goal of eradicating hunger. They also help decrease poverty (SDG #1), and they promote health and wellbeing (#3), gender equality (#5), affordable and clean energy (#7), climate action (#13), and protecting life on land (#15). Addressing the world’s largest challenges will require such multifaceted approaches.

 

12294849_10153775810177152_1904629783367632173_n

Matt Grobis is a 4th-year PhD candidate in Ecology and Evolutionary Biology and the Managing Editor of Highwire Earth. He researches the collective dynamics of fish schools in response to predation risk. Follow him on Twitter @mgrobis.

Empowering Communities and Building Resilience: The United Nations’ strategy to eradicate poverty

Written by Julio Herrera Estrada

The beginning of 2016 marked the start of the Sustainable Development Goals (SDGs) that were agreed upon by the United Nations last September. These 17 goals, broken into 169 specific targets, are set to last through 2030 and address a wide range of interrelated issues such as poverty alleviation, improved health and education, gender equality, sustainable use of natural resources, and biodiversity conservation. The SDGs replaced the eight Millennium Development Goals (MDGs) that lasted from 2000 to 2015. Many of the MDGs were successfully met, but huge gaps still remained on issues including access to drinking water, income inequality, and gender inequality (here’s the final report).

The first goal in both the MDGs and the SDGs focuses on poverty. The initial goal was to help at least half of the people who had less than US$1.25 per day (the definition of extreme poverty) rise above that threshold between 1990 and 2015. This goal was successfully met as the proportion of extreme poverty was cut from 49% to 14% by 2015. SDG #1 now calls for reducing this proportion to zero as well as addressing poor communities above the extreme poverty line. Moreover, this goal raises two key needs:

  1. Empowerment of communities to have the ability to rise from poverty, and
  2. Building communities’ resilience against climate, social, and economic shocks

Seeking countries to take ownership of this SDG and acknowledging that poverty looks differently around the world, it encourages each country to use their own definitions of poverty and to design “nationally appropriate social protection systems.” It suggests countries to ensure that poor communities have access to basic social services, financial services, property rights, sustainable livelihoods, and entrepreneurial opportunities. While there is also a call for increasing mobilization of resources towards poverty alleviation and the creation of a supportive international environment, the United Nations is encouraging development from within.

Empowering Communities and Building Resilience: The United Nations' Strategy to Eradicate Poverty
Source: Pixabay.com

In this context, resilience is the ability of people and communities to reduce their exposure and vulnerabilities to natural hazards such as droughts and floods, or economic or social shocks. This is an important aspect to address, given that a recent report by the World Bank found that climate change related hazards would push back 100 million people below the extreme poverty line by 2030, if development efforts do not take them into account and emphasize building resilience.

The good news is that this framework to combat poverty in the next 15 years is addressing the roots of the problem and is treating it as a multi-faceted issue where advances in gender equality, employment, social services, and infrastructure are also recognized as critical. Nevertheless, the resources needed to achieve this goal will put it in conflict with the SDGs that address the conservation of our climate and the planet’s natural ecosystems. There is little doubt that huge strives in creativity, innovation, and will to change some of our habits will be needed if we are to achieve all 17 SDGs.

 

Julio-10 copy

Julio Herrera Estrada is a 5th year PhD Candidate in the Environmental Engineering and Water Resources Program, and the Editor-in-Chief of Highwire Earth. His research focuses on the mechanisms and human impacts of droughts, and the policies that can help make our resource management sustainable and resilient. Follow him on Twitter @JulioSustDev.

How Do Scientists Know Human Activities Impact Climate? A brief look into the assessment process

Written by Levi Golston

On the subject of climate change, one of the most widely cited numbers is that humans have increased the net radiation balance of the Earth’s lower atmosphere by approximately 2.3 W m-2 (Watts per square meter) since pre-industrial times, as determined by the Intergovernmental Panel on Climate Change (IPCC) in their most recent Fifth Assessment Report (AR5). This change is termed radiative forcing and represents a basic physical driver of higher average surface temperatures resulting from human activities. In short, it elegantly captures the intensity of climate change in a single number – the higher the radiative forcing, the larger the human influence on climate and the higher the rate of increasing surface temperatures. Radiative forcing is also significant because it forms the basis of equivalence metrics used in international environmental treaties, defines the endpoint of the future scenarios commonly used for climate change simulations, and is physically simple enough that it should be possible to calculate without relying on global climate models.

Given its widespread use, it is important to understand where estimates of radiative forcing come from. Answering this question is not straightforward because AR5 is a lengthy report published in three separate volumes. Chapter 8 of Volume 1, more than any other, quantitatively describes why climate change is occurring due to natural and anthropogenic causes and is, therefore, the primary source for how radiative forcing is assessed by the IPCC. One of the key figures is reproduced below, illustrating that the basic drivers of climate change are human-driven changes to aerosols (particles suspended in the air) and greenhouse gases, along with their relative strengths and uncertainties:

LeviFig1
Fig. 1: Assessments of aerosol, greenhouse gas, and total anthropogenic forcing evaluated between 1750 and 2011. Lines at the top show the 5-95% confidence range, with a slight change in definition from AR4 to AR5 [Source: Figure 8.16 in IPCC AR5].
This post seeks to answer two questions: how is the 2.3 W m-2 best estimate determined in AR5? And further, why is total anthropogenic forcing not known more precisely than shown in Figure 1 given the numerous observations currently available?

1. Variations on the meaning of radiative forcing

Fundamental laws of physics say that if the Earth is in equilibrium, then average temperature of the Earth is such that there is a balance between the energy that the Earth receives and the energy that it radiates. When this balance is disturbed, the climate will respond due to the additional energy in the system and will continue to change until the forcing has fully propagated through the climate system at which point a new equilibrium (average temperature) is reached. This response is controlled by processes with a range of timescales (e.g. the surface ocean over several years and glaciers over many hundreds of years), so radiative forcing depends on when exactly it is calculated. This leads to several subtly differing definitions. While the IPCC distinguishes between radiative forcing and effective radiative forcing, I do not attempt to distinguish between the two definitions here and refer to both as radiative forcing.

Figure 2 shows the general framework for assessing human drive change used by the IPCC, which is divided into four major components. Firstly, the direct impact of human activities through the release (emission) of greenhouse gases and particulates into the atmosphere is estimated, along with changes to the land surface through construction and agriculture. These changes cause the accumulation of long-lived gases in the atmosphere including carbon dioxide, the indirect formation of gases through chemical reactions, and an increase in number of aerosols in the atmosphere (abundance). Each of these agents influences the radiation balance of the Earth (forcing) and over time causes warming near the surface (climate response).

LeviFig2
Fig. 2: Linear [uncoupled] framework for modeling climate change shown with solid arrows. Dashed arrows indicate climate feedback mechanisms driven by future changes in temperature. Credit: Levi Golston
2. Individual drivers of change

The two major agents (aerosols and greenhouse gases) are further sub-divided by the IPCC as shown below. Each of the components are assessed independently, then summed together using various statistical techniques to produce the best estimate and range shown in Figure 1.

LeviFig3
Fig. 3: Estimates of radiative forcing (dotted lines) and effective radiative forcing (solid lines) for each anthropogenic and natural agent considered in AR5. [Source: Figure 8.15 in IPCC AR5].
Since the report itself is an assessment, each of the estimates in Figure 3 were derived directly from the peer-reviewed literature and are not the result of new model runs or observations. I have recently identified the specific sources incorporated in this figure elsewhere if one wants to know exactly how any of the individual bars were calculated. More generally, it can be seen that the level of confidence varies for each agent, with the most uncertainty for aerosol-radiation and aerosol-cloud interactions. Positive warming is driven most strongly by carbon dioxide followed by other greenhouse gases and ozone. It can also be seen that changes in solar intensity are accounted for by the IPCC, but are believed to be small compared to changes from the human-driven processes.

3. Can net radiative forcing be more directly calculated?

Besides adding together individual processes, is it also possible to independently assess the total forcing itself, at least over recent decades where satellite and widespread ground-based observations are available?  In principle, changes in the Earth’s energy balance, primarily seen as reduced thermal radiation escaping to space and as heat uptake by the oceans, should relate back to the net forcing causing these changes in a way that provides an alternate means of calculating human’s influence on the climate. To use this approach, one would need a good idea of how sensitive the Earth’s response will be in response to a given level of forcing. However, this sensitivity is equally or more uncertain than the forcing itself, making it difficult to improve on the process-by-process result. The ability to account for the Earth’s overall energy balance and then quantify radiative imbalances over time also remains a challenge. Longer data records and improved knowledge of climate sensitivity may eventually advance the ability to directly determine total radiative forcing going forward.

Still-North_America-1280x720_full
Fig. 4: Simulation of CO2 concentrations over North America on Feb 12th, 2006 by an ultra-high-resolution computer model developed by NASA. Photo Credit: NASA
4. Summary

The most widely cited number is based on an abundance-based perspective with step changes for each forcing agent from 1750 to 2011, resulting in an estimated total forcing of 2.3 W m-2. This number does not come from an average of global climate models, as might be imagined, but instead is the sum of eight independent components (seven human-driven, one natural), each derived and assessed from selected recent sources in the peer-reviewed literature.

Radiative forcing is complex and requires models to translate how abundances of greenhouse gases and aerosols actually affect global climate. For gases like carbon dioxide, documented records are available going back to pre-industrial times and earlier, but in other cases additional modelling is needed to help determine the natural state of the land surface and atmosphere. The total human-driven radiative forcing (Figure 1) is still surprisingly poorly constrained in AR5 (1.1 to 3.3 W  m-2 with 90% confidence), which is a reminder that while we are certain human activities are causing more energy to be retained by the atmosphere, continued work is needed on the physical science of climate change to determine by exactly how much.

Levi

Levi Golston is a PhD candidate in Princeton’s Environmental Engineering and Water Resources program. His research develops laser-based sensors coupled with new atmospheric measurement techniques for measuring localized sources, particularly for methane and reactive nitrogen from livestock, along with methane and ethane from natural gas systems. He blogs at lgsci.wordpress.com/

Conservation Crossroads in Ecuador: Tiputini Biodiversity Station and the Yasuní oil fields

Written by Justine Atkins

On an early morning boat, mist still rises off the water and the Amazonian air is thick with the characteristic dampness of tropical rainforests. We’re heading out in search of a nearby clay-lick where many parrot species congregate. In the partial slumber of any graduate student awake before 6 am, we sleepily scan the riverbank and tree line for any signs of life. It’s from this reluctantly awake state that our guide Froylan suddenly jolts us to the present and directs our gaze to a small clearing alongside the river. There, out in the open, a female jaguar sits in the grass near the river’s edge. By what seems like sheer luck, we have seen one of the most elusive Amazonian species, something our second guide José says he himself has only achieved five times in seven years.

This majestic female jaguar watches us closely from the safety of the grassy river bank, perhaps waiting for our boats to move on so she could continue on her route across the Tiputini river. Photo credit: Alex Becker

Of course, luck is only part of the story. The river we’re traveling down is the Tiputini River, which forms one edge of Ecuador’s Yasuní National Park — an area of some 3,800 square miles of pristine rainforest, historically left untouched by human development, that is practically overflowing with biodiversity. There are more species of plants, reptiles, insects, mammals and birds here than almost anywhere else in the Amazon and, by extension, the world.

Nestled in the dense array of kapok, ficus, Cecropias and Socratea or “walking palm” trees, is Tiputini Biodiversity Station (TBS). Established in 1993 and chosen specifically for its isolated location, the research station at Tiputini is a collaborative venture between Universidad San Francisco de Quito and Boston University. TBS supports ecological research at all levels, hosting everyone from visiting undergraduate students to PhD candidates to senior academics.

Almost everything about TBS and its surroundings reinforces the feeling that this is truly one of the most pristine and isolated centers of biodiversity in the world. As visitors to TBS for our Tropical Ecology field course, the first-year graduate students in Princeton’s Department of Ecology and Evolutionary Biology travelled by multiple planes, boats, buses and trucks over five hours from the nearest city (Coca) just to reach the field station itself. Photo credit: Alex Becker

Yet, as unfortunately seems inevitable whenever anyone talks about these last remaining ‘untouched’ areas, the pristine nature of TBS and Yasuní National Park comes with its own caveat. On our journey to the station, we are, probably naïvely, surprised to have to go through a security checkpoint run by the national oil company Petroamazonas. The mere presence of Petroamazonas indicates that the as yet undisturbed area surrounding TBS is up against a rapidly ticking clock. And with only a cursory glance over the basic facts of this situation, the sound of that ticking clock becomes deafening.

*     *     *

There are hundreds of millions, possibly billions, of barrels of Amazon crude oil lying beneath Yasuní National Park. For any nation, but particularly Ecuador — a relatively poor, developing country — the temptation to drill is immense. (Ecuador’s per capita GDP in 2013 was $6003, compared to the US GDP in the same year of $53,042.) For example, the government stood to make over $7 billion net profit (at 2007 prices) from the extraction and sale of 850 million barrels of oil from these reserves.

Yasuní had the potential to be a model for innovative environmental policy. It possesses unparalleled species’ richness, is located in a nation dependent on the extraction of non-renewable resources, and is home to the indigenous Waorani and two uncontacted groups, Tagaeri and Taromenane. In many ways, the variety of stakeholders and conflicts of interests and aims among them represents one of the most daunting conservation and sustainable development challenges the world faces today. How do we balance the needs of biodiversity maintenance, socioeconomic parity and protection of indigenous people when the goals of each seem to fundamentally misalign with one another?

The attempt to resolve this conflict was compellingly detailed in a National Geographic feature in January 2013. In 2007, President Correa proposed the so-called Yasuní-ITT Initiative (named after the three oil fields in the area it encompasses: Ishpingo, Tambococha, and Tiputini). The Yasuní-ITT sought $3.6 billion in compensation (to be contributed by international donors, both countries and corporations) in exchange for a complete ban on oil extraction and biodiversity protection for the ‘ITT block’ in the northeast corner of Yasuní.

With this initiative officially instated in 2010, Ecuador became one of the first nations to attempt sustainable development and action against climate change based on a model of truly worldwide cooperation. For this model to be successful, the government relied on other countries to recognize that an international desire to preserve the ecological value of Yasuní also meant an international responsibility to contribute to the opportunity cost of this preservation. There was a ground swell of support for this proposal within Ecuador and initially this was also met with enthusiasm abroad. However, by mid-2012, the Ecuadorian government had received only $200 million in pledges, contributions stalled and the Yasuní-ITT initiative was officially abandoned in August 2013.

Similar sustainability issues were at the forefront of the recent UN Climate Change Conference 2015 in Paris, also known as COP 21 (21st session of the Conference of Parties). Much of the prolonged negotiation and disagreement among the attending countries was based on the divergence of priorities among developed and developing nations. The former group was, by-and-large, pushing for uncompromising targets on emissions reduction and renewable energy use from the current highest emissions contributors, chief among which are developing nations like China and Brazil.

But developing nations felt strongly that they should not be excluded from the full benefits of industrialization, which developed nations have profited from in the past. One potential solution to this conflict, and one which led to part of the Paris Agreement, is for developed nations to support developing nations in the transition from fossil fuels to renewable, lower emission energy sources through financial compensation. Sound familiar? This was exactly the logic behind the Yasuní-ITT, so the failure of this initiative represents more than just a threat to Yasuní — it symbolically threatens action against climate change worldwide.

A closer look at the failure of the Yasuní-ITT reveals that there were in fact more complex considerations at play than simply a lack of pledged contributions. In an essay evaluating the decision to abandon the initiative, Ariana Keyman, an associate at the Busara Center for Behavioral Economics in Nairobi, assessed the particular political, economic and social factors that contributed to the Yasuní-ITT’s demise. Due to his dogged pursuit of a ‘New Latin American Left’, Ecuador’s President Correa was determined to increase spending on pro-poor socioeconomic development while also preserving the status of Ecuador’s environment and biodiversity. Unfortunately, as is often the case, something had to give and it was ultimately the environment that was compromised. This was only exacerbated by the historic dependency of this country on the oil industry and the ‘closed-door’ manner in which the Yasuní-ITT was both adopted and abandoned by the government. In this light, perhaps the case for international collaboration and economic cooperation on tackling the challenges of biodiversity conservation and climate change is not so hopeless, but it is still likely to be a bumpy road ahead.

*     *     *

Tiputini Biodiversity Station itself still seemed largely untouched during our trip in January 2016. Part of this was surely due to our unfamiliarity with the oil extraction process, but it’s clear that the continued tireless efforts of environmental groups are at least holding off the worst of the potential destruction for now. The founding director of TBS, Kelly Swing, wrote in a guest blog post in National Geographic in 2012 that the incursion of oil companies in this area has also in some ways helped scientists learn more about the incredible ecological communities in this region, thanks to increased funding and accessibility.

More than the literal isolation, the overwhelming presence of a brilliant array of mammals, birds, reptiles, amphibians and insects that seem to be almost dripping from the trees was a constant reminder of how far from urbanization we were and the sheer uniqueness of the location of TBS. Every morning, we awoke to the reverberating booms of howler monkeys and the screeching calls of caracara and macaws high above us. Walking to and from the dining area, we routinely spotted roosting bats, several species of anole lizards and learned to recognize the squeaking communications and rustling branches around us the local woolly monkey troop on their morning or evening commute. All of these wonderfully unique species (clockwise from top left: white-necked jacobin, motmot, woolly monkey, and tree frog) are threatened in some capacity by the oil industry. Photos credit: Alex Becker.

It appears, however, that the benefits are unlikely to outweigh the costs, particularly when the long-term consequences of the oil industry in Yasuní will be unknown for years to come. Swing was quick to point out that alread there are documented negative impacts — insects are being drawn to huge gas flares and eviscerated in large numbers, eliminating important food resources for frogs, birds and bats, and industrial noise pollution disrupting the communication channels of calling birds and primates, potentially limiting their ability to find mates, locate food, and avoid predators.

In establishing the research station along the Tiputini River, Swing said that their goal was “to be able to study and teach about nature itself, not human impacts on nature.” From our experience there, this goal was definitely realized in the most fantastic way possible, but how many other visitors who come after us that will be able to say the same thing we cannot say with any certainty. As global citizens, this is a concern that we should all be dedicated to addressing.

Justine is a first-year PhD student in the Ecology and Evolutionary Biology department at Princeton University. She is interested in the interaction between animal movement behavior and environmental heterogeneity, particularly in relation to individual and collective decision-making processes, as well as conservation applications.

Losing the Climate War to Methane? The role of methane emissions in the global warming puzzle

Written by Dr. Arvind Ravikumar

There is much to cheer about the recent climate agreement signed last December at the 21st Conference of Parties (COP 21) in Paris, France to reduce greenhouse gas emissions and limit global temperature rise to below 2° C. Whether countries will implement effective policies to achieve this agreement is a different question. Leading up to the Conference in Paris, countries proposed their intended nationally determined contributions (INDCs). These refer to the various targets and proposed policies pledged by all countries that signed the United Nations Framework Convention on Climate Change on their intended contribution to reduce global warming. The United States, among other things, is banking on the recently finalized Clean Power Plan by the Environmental Protection Agency (EPA) – this policy aims to reduce US greenhouse gas (GHG) emissions from the power sector by 26 to 28% in 2030, partly by replacing high-emitting coal fired power plants with low-emitting natural gas fired plants, and increased renewable generation (primarily wind and solar). Electricity production by natural gas fired plants is therefore expected to increase over the next few decades, acting as a ‘bridge-fuel’ to a carbon-free economy. Even though the US Supreme Court recently halted the implementation of the Clean Power Plan, the EPA anticipates that it will eventually be upheld.

A major component of natural gas is methane. This is a highly potent greenhouse gas whose global warming potential (i.e. ability to increase the Earth’s surface temperature through the greenhouse effect) is 36 times that of carbon dioxide in long-term (100-year impact) and over 80 in the near-term (20-year impact). Although carbon dioxide is a major component of US greenhouse gas emissions (see Fig. 1), it is estimated that methane contributes around 10% of the total emissions. Thus, given its significantly higher global warming potential, methane emissions and leakage can potentially erode the climate benefits of declining coal production.

Figure 1: US greenhouse gas inventory (2013) Data from EPA
Figure 1. US greenhouse gas inventory (2013). Source: EPA

Methane emissions are fairly diversified across natural and man-made sources. Figure 2 shows the sources of methane emissions in the US (2013) as estimated by the EPA through its GHG monitoring program. While 50% of emissions can be attributed to agriculture and waste-disposal activities, we can see that about 30% of methane emissions come from the oil and gas industry. Much of this can be attributed to the recent boom in non-conventional or shale gas production through fracking technology. The combination of low natural gas prices and higher demand from the power sector makes it imperative to reduce methane emissions as much as technologically feasible.

Fig 2
Figure 2. US methane emission by source (2013) . Source: EPA.

Currently, methane leaks occur at all stages of the natural gas infrastructure – from production and processing, transmission to distribution lines in major cities. While the global warming effects of higher methane concentrations are fairly well understood, there is currently little consensus on the magnitude of emissions from the natural gas infrastructure. For example, a recent study found that the average methane loss in all distribution pipelines around Boston was about 2.7%, significantly higher than the 1.1% reported in inventory estimates to the EPA. Another study that was published in the academic journal, Science, showed that various independent measurements of methane leakage rate across the US infrastructure varied from about 1% to over 6%. Climate benefits of switching from coal to natural gas fired power plants would critically depend on this leakage rate.

[…], detailed measurements from the Barnett shale region in Texas showed that just 2% of the facilities in the region account for 50% of all the methane emissions.

To better estimate methane leakage, the Environmental Defense Fund (EDF), a non-profit organization based in Washington, DC, organized and recently concluded a series of 16 studies to find and measure leaks in the US natural gas supply chain. While some of the results are currently being analyzed, much of the data show that conventional inventory estimates maintained by the EPA have consistently underestimated the leakage from various sources. It was shown that the Barnett shale region in Texas that produces about 7% of the nation’s natural gas, emitted 90% more methane compared to EPA estimates. To complicate matters further, until recently, estimates from atmospheric top-down data measured using satellites and aircrafts significantly exceeded land-based bottom-up measurements using methane sensors. On a similar note, detailed measurements from the Barnett shale region in Texas showed that just 2% of the facilities in the region account for 50% of all the methane emissions. Such a small fraction of large emission sources will further complicate direct measurements where typically only a small fraction of the facilities in a region are measured. While the EDF and other studies have been instrumental in our current understanding of methane leaks in the US and its contribution to greenhouse gas emissions, much work is required to understand sources, and most importantly, ways to cost-effectively monitor, detect and repair such leaks.

Aerial footage of the recent natural gas leak from a storage well in Aliso Canyon near LA. The leak is estimated to have released 96000 metric tons of methane, equivalent to about 900 million gallons of gasoline burnt and $15 million worth of natural gas. Source: Environmental Defense Fund, 2015.

Methane leakage in the context of global warming has only recently caught public attention – see here, here and here. In addition to greater awareness in business and policy circles, significant efforts are required to identify economically viable leak detection and repair programs. Currently, the industry standard to detect methane leaks include high-sensitivity but high-cost sensors, or low-cost but low-sensitivity infrared cameras. There is an immediate need to develop techniques that can be used to cost-effectively detect leaks over large areas (e.g. thousands of squared miles). From a regulatory perspective, EPA has released proposed regulations to limit methane leaks from the oil and gas industry. This comes on the heels of the goals set by the Obama administration’s Climate Action Plan to reduce methane emissions from the oil and gas sector by 40 to 45% from 2012 levels by 2025. These regulations require oil and gas companies involved in the entire natural gas life cycle to periodically undertake leak detection and repair procedures, depending on the overall leakage levels. The final rule is expected to be out sometime in 2016.

The success of the Clean Power Plan in reducing greenhouse gas emissions will significantly depend on the strength of the proposed regulations to curb methane leaks. We now have a better estimate of fugitive emissions (leaks) of methane from the US natural gas infrastructure. Concurrently, there should be a greater focus on developing cost-effective programs to detect and repair such leaks. It was recently reported that replacing old pipelines with newer ones in the gas distribution network in a city is effective in reducing leaks, and improving public safety. With a considerably higher global warming potential than carbon dioxide, methane has the potential to erode the climate benefits earned by switching from high emitting coal plants to low emitting natural gas power plants. Ensuring that does happen will take a coordinated effort and commitment from both the industry and government agencies.

35d1259

Arvind graduated with a PhD in Electrical Engineering from Princeton University in 2015 and is currently a postdoctoral researcher in Energy Resources Engineering at Stanford University. Somewhere later in grad school, he became interested in the topics of energy, climate change and policy. Arvind is an Associate Editor at Highwire Earth. You can read more about his work at his personal website.

Human Impacts on Droughts: How these hazards stopped being purely natural phenomena

Written by Dr. Niko Wanders

We often hear about droughts around the world including those recently in the U.S. and Brazil, which has threatened the water safety for this year’s Olympic Games. Despite their natural occurrence, there is still a lot that we do not understand fully about the processes that cause them and about how they impact our society and natural ecosystems. These topics are of great interest to scientists and engineers, and of great importance to policy makers and stakeholders.

The elusive definition of a drought

A drought can be broadly defined as a decrease in water availability below levels that are considered normal within a region. This means that droughts do not only occur in warm, sunny, dry countries but can take place essentially anywhere. What makes it hard to come up with a single, precise definition of a drought is that this below-normal water availability can be found at the different stages of the water cycle: precipitation, soil moisture (i.e. how much water there is in the soil), snow accumulation, groundwater, reservoirs and streamflow. Therefore, more useful definitions of drought conditions have to be tailored for specific sectors (e.g. agriculture or power generation) by focusing on the stage of the water cycle that is relevant for them (e.g. soil moisture for farmers, and streamflow for controllers of hydroelectric and thermoelectric plants).

Droughts can cover areas that range from a few thousand squared miles to large portions of a continent and can last anywhere from weeks to multiple years. Normally they start after a prolonged period of below-normal precipitation, sometimes in combination with increased evaporation due to high temperatures. This then causes a reduction in water availability in the soil, which can lead to lower groundwater and river levels as a result of decreased water recharge from groundwater aquifers into rivers. Snowfall is another important factor because it adds a steady release of water resources into streams throughout the Spring. When most of the precipitation comes as rain, it will wash out fast, leaving the Spring with dry conditions once again. The evolution of a drought through the water cycle is called drought propagation and normally takes multiple weeks to several months to take place.

So far this season, El Niño has been bringing some relief to the California drought. The current snow accumulation is above normal which is good news for this drought stricken region. The forecasts for the upcoming months look hopeful and it is likely that California will see some relief of the drought in the coming months. Nevertheless, it will take multiple years before groundwater and reservoir levels are back to their normal conditions, so the drought and its impacts will still remain for at least the coming years.

season_drought
Figure 1. U.S. Seasonal Drought Outlook provided by NOAA.
Droughts’ impacts on society

Extensive and long-lasting droughts can accumulate huge costs for the regions affected over time. For example, the ongoing California drought caused $2.2 billion in damage for the year 2014 alone. This is only an estimate of the damage to society in monetary terms, while the severe impacts on the region’s ecosystems are difficult to measure and quantify. As a result of the drought conditions, reservoir storages in most of California are at record low levels and strict water conservation policies have been implemented.

The severity of a drought’s impacts, however, depends greatly on the wealth, vulnerability, and resiliency of the region affected, including the degree to which the local economy and services rely on water. Despite the huge costs of the California drought, the U.S. is more capable of mitigating its effects and eventually recovering from it given the country’s general financial strength compared to many developing nations. According to reports by the United Nations and the Inter-Agency Standing Committee, an estimated 50,000 to 260,000 people lost their lives in the severe 2011 drought in the Horn of Africa, due to the fact that the financial means to provide food aid were not present and outside help started too late.

To have better tools to deal with these extreme events, several government agencies and institutes around the world have created drought monitors to track current drought conditions and to forecast their evolution. Examples are the Princeton Flood and Drought Monitors for Latin America and Africa, the U.S. Drought Monitor and the European Drought Observatory. These websites provide information on current drought conditions, which can be used to take preventive measures by governments and other stakeholders. Additionally, they can be used to inform the general public on current conditions and the need for preventive measures, such as conservation.

Latin American and African Drought Monitors developed at Princeton University
Figure 2. Latin American and African Flood and Drought Monitors developed at Princeton University. Credit: Terrestrial Hydrology Research Group at Princeton University.
The power to affect a drought

Traditionally, droughts have only been thought of as a natural phenomena that we have to endure from time to time. However, a recent commentary in Nature Geoscience that included two Princeton contributors argued that we can no longer ignore how humans affect drought occurrences. For example, when conditions get drier from lack of rainfall, people are more likely to use water from the ground, rivers and channels for irrigation. These actions can impact the water cycle over large areas, affecting the water resources of communities downstream and of the local communities in the near future. In the case of California, the severe drop in groundwater levels has escalated in the last three years due to a combination of the extreme drought conditions and the resulting heavy pumping for irrigating crops. The extra water that becomes available from pumping of groundwater is only a temporary and unsustainable solution that will alleviate the drought conditions in the soil locally for a short period of time. Most of the irrigated water will evaporate and only a small portion will return into the groundwater. In the long run, these depleted groundwater resources need to be replenished to recharge rivers and reservoirs – a process that can take multiple years to decades. Furthermore, extracting groundwater in large amounts can lead to subsidence – a lowering of the ground levels – that can sometimes be irreversible and have permanent effects on future water availability in the region. Thus, through our actions we have the power to affect how a drought develops, making it necessary to rethink the concept of a drought to include our role in enhancing and mitigating it.

Figure 3. On the left: Measurement of recent subsidence in San Joaquin Valley, Photo Credit: USGS. On the right: Measured subsidence in the San Joaquin Valley between May 3, 2014 and Jan. 22, 2015 by satellite, Photo Credit: NASA
Figure 3. On the left: Measurement of subsidence (i.e. lowering of the ground levels) in the San Joaquin Valley during the past three decades, Photo Credit: USGS. On the right: Measured subsidence in the San Joaquin Valley between May 3, 2014 and January 22, 2015 by satellite, Photo Credit: NASA.

But it’s not all bad news. Last year I carried out a study with my collaborator, Dr. Yoshihide Wada, that found that sometimes human interventions can have a positive effect on the impact of natural drought conditions. This is most clear when we look at reservoirs that are built in many river systems around the world. It is shown that by building these structures the river discharge is more equally spread throughout the year. High flows or floods can be dampened by storing some of the water in the reservoirs, while this water can be used in the dry season or during a drought event to reduce the impact of low flows. This in itself opens up opportunities for regional water management that can help reduce the region’s vulnerability to droughts. Three limitations of the reservoirs are that they increase the amount of evaporation by having large surface areas, their benefits are limited in prolonged drought conditions simply because their storage is not infinite, and finally, they have a large impact on plants and animals in the downstream ecosystems (e.g. migrating fish species that need to swim upstream).

HumanDrought
Figure 4. Impact of human intervention on future hydrological drought, as a result of irrigation, reservoir operations and groundwater pumping. Darker colors indicate higher levels of confidence (Figure adapted from Wanders and Wada, 2015).
Drought in the future

Scientist have carried out many studies to explore what will happen to the characteristics and impacts of droughts in the future. Multiple research publications show that droughts will most likely increase in severity compared to the current conditions in many of the world’s regions with projected increases in human water demand, painting a stressful future. This then requires an adjustment in the way we deal with drought conditions, how we monitor and forecast these extremes, and how we consume water in general.

A short-term solution is trying to improve our monitoring and forecasting of these events so that we are better prepared. For example, additional improvements in meteorological and hydrological forecasts for conditions 3-6 months in advance would help operators manage their reservoirs in a way that would reduce the impact of upcoming drought events. These improvements require scientists to become more aware of the impact that humans have on the water cycle, which is a growing area of interest in recent years, but is definitely not standard practice.

Apart from increasing our possibilities to forecast upcoming drought events, we could also change our response to ongoing drought conditions by trying to be more efficient with the remaining available water. This could be achieved by using more efficient irrigation systems, building separate sewage systems for rainwater (that could be used for drinking water) and domestic and industrial wastewater (that is only reusable after severe treatment), and not cultivating crops that have a high water demand in areas with a natural low water availability. All these measures require long-term planning and willing government agencies and societies that would like to push and achieve these goals. Often a severe event (with significant damage) is needed to create the necessary awareness to realize that these measures are a necessity, such as the case in California that has resulted in new water laws and in Australia a few years ago.

Humans and the natural water system are strongly intertwined, especially in hydrological extreme conditions. Our impact on the water cycle is significant and cannot be neglected, both in normal conditions and under extreme hydrological ones. It will be important in the coming decades for us to learn how to responsibly manage our valuable water resources within a changing environment.

 

wande001 klein formaat

Dr. Niko Wanders is a Postdoctoral Research Fellow in the Civil and Environmental Engineering Department at Princeton working together with Prof. Eric Wood. His research interests include the study of the physical processes behind droughts,  as well as the factors that influence their magnitude and impact on society. Niko received a NWO-Rubicon Fellowship to work on the development of a global sub-seasonal drought forecasting system. The aim of the project is to develop a system that cannot only forecast upcoming drought events, but also make reliable forecast on the drought impact on agricultural production, water demand and water availability for human activities.

Americans Are Paying Too Much for Mass Incarceration: Prison education programs provide a way out

Written by Kaia Tombak

Some names in this blog post have been changed to protect the privacy of those mentioned.

Jack greeted me cheerfully as he strolled into class, asking me how things are going.

“I’m fine, thanks,” I replied. “How are you?”

“Oh, I’m good,” he chuckled. “You know, given the circumstances!”

We were sitting in a men’s maximum security prison in New Jersey with nine others settling down for a lesson in environmental sciences. Through the New Jersey Scholarship and Transformative Education in Prisons (NJ-STEP) program and the Prison Teaching Initiative (PTI) at Princeton University, I was one of five teachers at the prison that night. The others were teaching classes on algebra, history, psychology, and the biology of woody plants.

Education programs within prisons in the U.S. are widespread but underfunded and they depend heavily on volunteer teachers and organizers. A student in my class today asked me to write to an NJ-STEP representative to push for a fundraising campaign to make the organization self-reliant. He was worried because the program has dealt with pushback from the public by those who argue that prisoners should not receive a free education on the taxpayer’s dime while others must go into debt for one. By the time you’ve finished reading this, I hope that you’ll agree that prison education programs should receive more public funding, not less, for both social justice and economic reasons, and that the U.S. should save taxpayers’ money by phasing out its unsustainable mass incarceration system.

__________________________________________________________________________________

“Tough on crime” really means “tough on the marginalized”
The U.S. used to be on par with European countries in its rate of incarceration. Between 1930 and 1970, the rate of imprisonment in the U.S. held steady at about 110 in 100,000 residents. This was comparable to rates in Europe, which have remained stable and low (e.g. Germany imprisons 93 in 100,000 residents, Turkey imprisons 112, and Denmark 67). Beginning in Nixon’s second term in the 1970’s, however, the prison population in the U.S. exploded, and now stands at 750 incarcerated people for every 100,000 residents (for the sociopolitical history behind this see this article in The Atlantic). The concurrent increase in the number of blacks imprisoned, the number of privately owned prisons, and the virtually free labor their inmates provide them has prompted some to equate this with the reinstatement of a form of racial segregation, and of slavery.


“Doubling the conviction rate in this country would do far more to cure crime in America than quadrupling the funds for [the] War on Poverty.”
Richard Nixon, TIME Magazine 1968

Nixon was wrong. Crime rates peaked in 1991, and only after that did they fall precipitously. While incarceration rates continued to climb afterward, the contribution that mass incarceration may have made to the decline in crime rates is estimated to be as low as 5%, with diminishing effects the further incarceration rates escalated. Moreover, crime has continued to decline in states that have recently cut back dramatically on incarceration rates.

Meanwhile, the excessive tough-on-crime policies Nixon adopted have resulted in unjust restrictions on the rights to life, liberty, and the pursuit of happiness for a huge portion of America’s citizens and have increased poverty in the country as a whole. Most incarcerated men contributed significantly to their household incomes prior to institutionalization, and the incarcerated population is drawn mostly from families that already have a low income. In poor neighborhoods, entire communities have lost a significant portion of their local economies to mass incarceration.

The costs of mass incarceration are not borne solely by incarcerated Americans and their families. Most of America’s incarcerated people are in state prisons. At an average annual cost of roughly $31,000 per inmate in state prisons, taxpayers are taking a major hit as a result of mass incarceration. Over the past couple of decades, correctional costs have been the second-fastest growing budget item at the state level after Medicaid. If the U.S. released half of its imprisoned that have been incarcerated for non-violent crimes, taxpayers would save $16.9 billion a year, a figure roughly equivalent to the GDP of Estonia.

__________________________________________________________________________________

The trauma of disadvantage
For many, including myself, it is difficult to understand the effects of growing up within a low-socioeconomic status (SES) household and/or with systemic racism without experiencing it firsthand. This cartoon summarizes some of those struggles, and this man’s story chronicles the anxiety of living under constant suspicion and racial profiling as an urban black man.

The effect of intersecting disadvantages is greater than the sum of its parts. Due to factors like discriminatory zoning policies that imposed segregation across race and class in American cities, many people in prison are from poor neighborhoods. In these communities, public schools are more likely to be overcrowded and underfunded, with low graduation rates and limited post-graduation opportunities. Some turn to illegal business to get out of this situation, and may become examples to youth of those who appear to have ‘made it’. Many do not, yet to be black or Hispanic in many American cities includes growing up under constant vigilance — from police officers to shopkeepers. Superfluous identity checks, pat-downs and arrests for innocuous offenses or actions that are not even offenses (e.g., eating French fries on a subway, sitting in a car in your aunt’s driveway, or video-recording an arrest), are not uncommon.

In a country that incarcerates more people than any other on the planet and about a third of its black men and a sixth of its Hispanic men (New Jersey is among the five worst states in this regard, with a black:white ratio of 12.5 to 1 and a Hispanic:white ratio of 3 to 1 in its prisons), it doesn’t take much imagination to understand how badly the odds are stacked against them. Many of the roughly 2 million incarcerated people in the U.S. don’t have to imagine it — they’ve lived it.

“. . . over the last few decades, I think many in the African-American community have been seduced by the argument that, well, this is all our fault. Somehow we’ve brought mass incarceration upon ourselves. If only we would pull up our pants or stay in school or not experiment with drugs, if only somehow we could be perfect and never make a mistake, that none of this would be happening. But, of course . . . young white kids who make mistakes, commit misdemeanors and jaywalking and smoke weed, they are able to go off to college if they’re middle-class. But if you’re poor or you live in the hood, the kinds of mistakes that people of all colors and classes make actually cost them their lives. And yet, then we turn around and blame them and say, ‘This is all your fault’.”
Michelle Alexander, Democracy Now!

__________________________________________________________________________________

On the way home, the other teachers and I stop for some dinner and share stories of our experiences. Although all of us have to be careful with the way we phrase certain things in class, those teaching psychology have to be extra sensitive.

“Today’s class was on childhood development. The section about theories on how early childhood experiences can affect one’s life trajectory,” explained Nicky. “That was sort of tricky to talk about. Some students would bring up their own past experiences, and some wondered what was going to happen to their children while they were away for so long.” The teachers didn’t have definite answers for them, emphasizing that there was still so much that was not known about the brain.

__________________________________________________________________________________

We do know, however, that the psychological effects of negative stereotypes, many of which our students grew up with, can be pervasive and affect performance in school or at work. A famous study by Steele and Aronson showed that black students performed as well as white students on an aptitude test, except when told that the test was meant to diagnose their intelligence. The researchers ascribed this psychological effect to the feeling of being at risk of fulfilling stereotypes associated with one’s group, which they termed ‘stereotype threat’. The same phenomenon has been shown in women, Hispanics, people of low SES, and even in white men when told they were being tested on a math test against Asian men [1–3].

Part of our task as teachers in prisons has become, at times unconsciously, to reverse the effects of what is often a lifelong belief that one is not intelligent, good at various school subjects, or deserving of a good education. The students’ reactions to our efforts have been rewarding but heart-breaking; even the slightest bit of encouragement from us is met with gratitude, and they repeatedly express how much they love to be able to come to our classes. For many of them, class time is an important psychological break from being insulated from the outside world and a sign that it has not forgotten them.

__________________________________________________________________________________

Releasing birds with clipped wings
Pushing for social change for a more equitable American society is the main task at hand, but it will take time. Meanwhile, over 600,000 people are released from prison every year. Many of them have nowhere to go and end up in shelters or on the streets. They are expected to integrate into society and make an honest living despite years of missed opportunities and despite having to inform potential employers that they have been incarcerated (they have to check ‘the box’, an enormous impediment to success in the employment race). These are not trivial hurdles for someone who has lived in an insular world and must now relearn a different lifestyle, operate new technologies, and catch up with the outside world that has surged ahead full-throttle without them. This New York Times article describes the shell shock of being released after many years in prison, and how some non-profit organizations are working to ease the process. Many of these discharged men and women (about 68%) are rearrested within two years following release, a shocking proportion only until one realizes that they are usually worse off than they were before their original incarceration.

Most federal and state prisons do offer some form of high school or college-level education, but only about 2% of the inmates in a given institution can participate in these programs because capacity is so limited. A provision of the 1994 Crime Act severely diminished these opportunities by discontinuing eligibility for Pell grants for the incarcerated. Judicial scholars have been recommending the reinstatement of this eligibility ever since (e.g. refs 4–5). The costs of doing so would be modest: $34 million or 0.1% of the $53 billion grant fund was granted to prisoners in 1994. This investment pays for itself and then some, with vocational education in prisons returning, on average, about five times the investment in benefits to taxpayers through crime reduction alone. Not to mention reductions in recidivism by roughly one-half in formerly incarcerated people that participate in prison education programs, and further reductions in those that successfully complete courses while in prison.

__________________________________________________________________________________

From baby steps to leaps and bounds
“You should see how hard-working and disciplined my students are,” Katie told the rest of us. “One of them has a strict schedule of work, exercise, and studying. He’s preparing for having to juggle work and study when he goes to Rutgers next year after his release!” We all gushed and the conversation turned to the recent news about how a Bard Prison Initiative prison debate team beat a Harvard debate team.

To respect our students’ privacy and to ensure that we can teach them without prejudice, we generally aren’t aware of what our students are there for or for how long. However, with little tidbits that our students have offered us, we’ve gathered that some of them are in class to prepare for work or further education after being released, and that others are there despite having little hope of being released for a very long time. This dynamic makes the class a joy to teach and interact with because they are all there voluntarily, they are highly motivated, and many are there just to learn for the sake of learning. Regardless of their particular situations, the opportunity to take courses in prison represents a sliver of hope for building themselves up to a better future.

__________________________________________________________________________________

A recent turn of events has brought more hope for the imprisoned: in July 2015, the Departments of Education and Justice announced that eligibility for Pell grants in support of pursuing post-secondary education and training for incarcerated Americans has been re-established through the Second Chance Pell Pilot Program. This announcement came with more welcome news, including steps being taken by the Federal Government to join the rising number of businesses and institutions that are “banning the box” on job applications (at least for the initial candidate screening), new funding to address homelessness and reduce recidivism in people released from prisons, and improving opportunities for children with incarcerated parents.

These are great first steps, but as long as prison education is not a standard option offered to most imprisoned Americans, many will still be released without having had opportunities to improve their chances of integration. Even with the current policy improvements, prison teaching programs will remain highly limited in capacity and dependent on volunteerism and donations. Most imprisoned Americans will still never get to study in a prison classroom, despite the supposed reformative purpose of prisons and the opportunities within them to close the education gap in the U.S. (39% of the incarcerated are below the literacy line, compared to 20% in the population as a whole). There is no quick fix for a voracious carceral system that has run on overdrive for four decades and a social system that has never been equitable, but there are big things that can be done now. It is essential to pull people out of the prison cycle by funding prison education; we cannot afford to abandon those who have been failed by this society. The Second Chance Pell Pilot Program will help, but reallocating resources to make education programs a standard resource for people in prisons would convert this baby step to a great leap forward.

This is what it comes down to: mass incarceration is expensive to taxpayers and contributes to the cycle of poverty, but releasing people from prison without improving their chances at integration often lands them back into prison. Offering incarcerated Americans opportunities to build themselves up through prison education programs pays for itself through reductions in crime and recidivism and gives them hope for the future. Empowering the casualties of a dysfunctional system through these training programs is therefore not only just, but is also good social and economic policy. Taxpayers can afford to give more of America’s imprisoned a ‘second chance’, especially considering that most did not have a fair first chance to begin with.

__________________________________________________________________________________

They Teach Us
On the next Tuesday at the prison, another small group assembled behind the teachers in the lobby, waiting to be let in.

“Are you teachers as well?” I asked.

“No, they teach us,” replied the man with a smile.

He was with an Alcoholics Anonymous group that meets with imprisoned alcoholics for group therapy sessions. Like him, it didn’t take very many classes for me to realize how much I was learning from my students. My initial preconceptions and prejudices about what it might be like to teach in a maximum security prison were whittled away and I was impressed at the depth of knowledge several of them had on important environmental issues. They were very hard-working and keen students — among the best I have ever taught. By the second class, teaching in prison had become the highlight of my week. It was my opportunity to climb out of the ivory tower and do something. An opportunity to understand a world that is tucked away in large buildings in the forgotten corners of America, where 2 million Americans live, yet from which many of us are completely disconnected.

If you are a member of the Princeton community, sign the Students for Prison Education And Reform (SPEAR) petition for our admissions system to abolish ‘the box’ here.

If you would like to contribute to Princeton’s Prison Teaching Initiative (PTI), whether through volunteering or donations, please contact Sandra Sussman.
ssussman [at] princeton.edu


Some of the other teachers shared end-of-semester student feedback with me for this article:

“Thank you so much for taking the time to teach us. You are greatly appreciated!”

“I really appreciate all of the professors and the opportunity to learn about the natural world. It is AWESOME!”

“I will never look at trees and plants in the same way again. I am glad I took this class.”

“Thank you for your time and volunteering to teach us. Prior to this section we had no idea you all did this on your own time. I thank you all and appreciate the gift of education.”

kaia1

Kaia Tombak is a Ph.D. student in Ecology and Evolutionary Biology at Princeton University. She studies social organization in gregarious animals and ecological networks in East Africa.

References

[1] Aronson J, Lustina MJ, Good C, Keough K, Steele CM, and Brown J. 1999. When white men can’t do math: necessary and sufficient factors in stereotype threat. Journal of Experimental Social Psychology 35: 29–46.

[2] Schmader T, Johns M. 2003. Converging evidence that stereotype threat reduces working memory capacity. Journal of Personality and Social Psychology 85: 440–452.

[3] Croizet J-C, Claire T. 1998. Extending the concept of stereotype threat to social class: the intellectual underperformance of students from low socioeconomic backgrounds. Personality and Social Psychology Bulletin 24: 588–594.

[4] Karpowitz D, Kenner M. 2001. Education as crime prevention: the case for reinstating Pell Grant eligibility for the incarcerated. New York, http://www.bard.edu/bpi/images/crime_report.pdf

[5] Tewksbury R, Erickson DJ, Taylor JM. 2000. Opportunities lost: The consequences of eliminating Pell Grant eligibility for correctional education students. Journal of Offender Rehabilitation, 31: 43–56.

Rethinking Our Approach to Protected Areas for Conservation

Written by Justine Atkins

Over the last fifty years, there has been progressively more widespread recognition that species’ biodiversity is rapidly declining. This is a huge problem, and not only ethically: biodiversity also has crucial economic returns such as ecotourism and promoting ecosystem resilience to climate change and invasive species. It is now well-established that the overwhelming responsibility for this decline rests firmly on our shoulders. Therefore, humans must change the way in which we interact with the environment.

One of the key ways in which we have responded to this ecological crisis is through the establishment of protected areas. These areas of land or ocean are sectioned off and restricted from human use, (theoretically) protecting the ecosystems within them from negative anthropogenic impacts such as deforestation and hunting. At least four international treaties have been established with the aim of protecting a representative example of all ecosystems and species types that exist in the world today [1]. Most recently, the Convention on Biological Diversity (CBD) set targets of protecting 17% of terrestrial area and 10% of the world’s oceans by 2020, to be specifically achieved through the establishment and expansion of strategically designed and managed protected area (PA) networks.

Perhaps surprisingly, global PA coverage is actually moving steadily towards these targets. Unfortunately, equally surprising is that biodiversity continues to decline despite this increased investment in conservation. The disconnect between the potential and realized impact of these reserves has led scientists to begin questioning the efficacy of PAs as a strategy for conserving biodiversity. This shift in perspective has, in turn, forced researchers to look more closely at how the effectiveness of PAs is assessed. Past evaluations have proven inconclusive, demonstrating both the huge benefits and significant shortcomings of protection. For example, many populations of large mammals within Africa’s reserves are still showing declines, while, on the other hand, raptor species in Botswana are much more abundant within PAs than outside these areas.

Why are there such contrasting outcomes? The answer involves several complex and interacting issues. Firstly, there is a wide variety of ways in which PAs can intervene in the environment — each with its own set of costs and benefits. Marine PAs, for example, can save declining fisheries stocks but are likely to negatively affect species living outside these areas as fisherman move their activities to neighboring areas. Secondly, establishing a PA has complicated socioeconomic impacts; these can range from being helpful, such as providing jobs, to harmful, such as forcing indigenous people off their land. Thirdly, because we lack a unified framework, past assessments of the consequences of any particular protection method have had to rely on “before-and-after” style analysis. This method is problematic because it fails to account for what would have happened to, for example, the biodiversity in a PA if that area had not been put under protection. Making direct comparisons to a baseline of conditions is crucial in science and is also referred to as the use of “control groups” (Box 1).

Box 1. Impact evaluation
Impact evaluation (IE) is a method of assessing the potential or realized consequences of a conservation policy (e.g. protected areas). IE involves the use of scientifically rigorous paired comparisons to assess the effects of an intervention. Unlike performance measurement, which monitors changes in ecological and socioeconomic indicators (such as number of species within a given area) over time, evaluating the impact of a protected area also accounts for changes that might have occurred in that area even in the absence of protection. In this way, we can get a picture of the transformations that have occurred within a protected area that are i) the direct result of the establishment of protection and ii) simply due to natural fluctuations in ecosystem characteristics over time and space.

Several closely related experimental techniques are key to the IE method:

- Control groups are groups of test subjects or sites which very closely resemble the subjects or sites receiving an experimental treatment (for example, a clinical trial of a new prescription drug) but are not themselves subject to the treatment. These groups ‘control’ for factors beside the treatment that could influence the outcome.

- Matched pair experimental design directly compares each ‘treated’ site or subject with a matching ‘control’ site or subject.

- Counterfactual is a quantified assessment of what would have happened if there had been no intervention in an area, or, to continue with the drug trial example, if no medication had been given to a sick patient.

A great ecological experiment that incorporates these techniques is found at La Selva research station in Costa Rica in which many comparative experiments are being carried out using plots of intact primary forest paired with plots of land that are, in all ecological aspects (e.g. elevation, gradient, size), very similar but were cut down or burnt different numbers of years ago (e.g. 10, 20, etc.) for a variety of purposes.

Recognizing the urgency of this problem for biodiversity conservation, the prominent journal Philosophical Transactions of the Royal Society B (Phil Trans for short) emphasized the need for a revised methodology of PA assessment in a recent special issue. As a way forward, this collection of articles proposes and presents several applications of a new control group-oriented technique called impact evaluation (Box 1). Impact evaluation (IE) is a growing field in conservation science. Like previous assessment strategies, IE measures the effects of an intervention (such as building a new PA). Unlike before, however, IE also explicitly considers what would have happened without any intervention, described by researchers as the “counterfactual” (Box 1).

The Phil Trans articles convincingly argue that considering the counterfactual is the only way to truly quantify how protected areas affect biodiversity, ecosystem conservation, and human welfare. Collectively, the authors show that this new method is crucial given the limited budgets in conservation. If implemented on a broad scale, IE could allow for much greater payoff in protected area development than is currently being observed.

While this goal of minimizing biodiversity loss and maximizing socioeconomic benefits may seem ambitious, there is already empirical evidence that suggests such a goal is within reach. So far, IE research has concentrated on measuring PA effectiveness in relation to changes in deforestation rates and species loss. With a baseline of unprotected areas for comparison, researchers have specifically quantified how the impact of a PA changes according to variation in environmental and socioeconomic characteristics. The Phil Trans issue documents how this approach is applied effectively in areas as varied as the Brazilian Amazon and freshwater systems in Northern Australia. Results of IE show, for example, that PA management has led to a greater reduction in the spread of an invasive mimosa plant in Kakadu National Park than would have been observed in the absence of a PA.

Great Barrier Reef
The Great Barrier Reef on the eastern coast of Australia is one of the largest marine protected areas in the world. While protection has allowed this ecosystem to remain a highly complex and biodiverse environment, this status and the future of the reef’s marine life remain under increasing threat. In large part, this is because it was initially judged ‘effective enough’ to have only a small percent of the area as specific ‘no-take’ zones, with commercial fishing and oil and gas exploration still allowed in many regions. This approach, now subject to ongoing review and revision, calls into question current methods for measuring the effectiveness of protected areas. Photo credit: Jurgen Freund / NaturePL

Socioeconomic effects are also more readily identified within the IE framework. The debate over PAs and poverty is long-running and controversial. In large part, this disagreement is because there is weak and inconclusive quantitative evidence of the impact of PAs on people. People instead rely on highly subjective assumptions and inconsistent anecdotal findings. However, under the direction of IE, conservation scientists can recommend reserve strategies that more accurately describe the direct benefits and costs of PAs for human welfare. For example, in Bolivia, an impact-based assessment of PAs provided empirical support for earlier qualitative findings that PAs are in fact not linked with poverty traps. Using pre-, mid- and post-implementation IE, researchers found similarly counterintuitive results in relation to the socioeconomic impacts of marine PAs in Indonesia.

It is understandably difficult to see why such an approach has not been the established practice for many years. Unfortunately, those in a position to transition to using IE in the context of PAs have little incentive to do so. In an increasing publication-centered field, academics are reluctant to commit to projects evaluating the impact of conservation initiatives because i) generally, prestige journals prefer to focus on core science and are less likely to publish such work and ii) funding for this line of research is limited. A recent opinion piece in Conservation Magazine from the directors at the Wildlife Conservation Society highlights this paradox.

On a more hopeful note, international funding agencies could be a lifeline for the facilitation of IE. These organizations not only have monetary means, they are also key stakeholders in that they control a vast proportion of the funding for PAs and would benefit greatly from the decreased cost: benefit ratio that impact evaluation could deliver.

In light of the continuing rate of species’ extinctions on our planet, it is crucial that we invest in preserving biodiversity. Protected areas have the potential to be highly valuable conservation tools, but to achieve this potential, we need a good way of objectively assessing the effectiveness of PAs. The Philosophical Transactions issue clearly demonstrates that widespread uptake of IE could fulfill this need and re-establish protection-based strategies as a cornerstone of conservation science.

References

[1] The Stockholm Declaration (1972), World Charter for Nature (1982), the Rio Declaration at the Earth Summit (1992), and the Johannesburg Declaration (2002).

justine4

Justine is a first-year PhD student in the Ecology and Evolutionary Biology department at Princeton University. She is interested in the interaction between animal movement behavior and environmental heterogeneity, particularly in relation to individual and collective decision-making processes, as well as conservation applications.

Energy Efficient Buildings: The forgotten children of the clean energy revolution

Written by Victor Charpentier

The world’s population will increasingly become urbanized. In the 2014 revision of the World Urbanization Prospects, the United Nations (UN) estimate that the urban population will rise from 54% today to 66% of the global population by 2050. Therefore it is no surprise that cities and buildings are at the heart of the 11th Sustainable Development Goal of the UN: “Make cities and human settlements inclusive, safe, resilient and sustainable”. With an ambitious time objective of 2030, the goal is set to improve the sustainability of cities and the efficient use of their resources.

The impact of buildings on the energy consumption

Energy consumption is often described in terms of primary energy – that is, untransformed raw forms of energy such as coal, wind energy, or biomass. Buildings represent an incredible 40% of the total primary energy consumption in most western countries, according to the International Energy Agency (IAE). A growing awareness of energy issues in the United States led the Department of Energy (DOE) to create building energy codes and standards for new construction and renovation projects setting requirements for reduction of energy consumption (e.g. revised ASHRAE Standard 90.1 2010 & 2013). The LEED certification created in 1994 by the non-profit US Green Building Council for the American building industry has proven that there is a private sector interest to recognize the quality of new buildings. The DOE’s building energy codes mainly focus on space heating and cooling, lighting and ventilation, since these are the main energy consumers in buildings. Great energy savings can thus be reaped from improving the performance of new buildings and renovating existing ones in these categories. Refrigeration, cooking, electronic devices (featured in category ”others” in Figure 1) and water heating, related to the occupants’ activity, are comparatively minor.

Victor Fig 1
Figure 1. Operational energy consumption by end use in residential (left) and commercial (right) buildings. Source: DOE building energy data book.
Energy end-uses play a significant role in driving energy transitions

Despite the regulatory efforts that have been implemented in the past decade, significant improvements remain necessary to reach the ambitious goals set by the UN. To help achieve them in the US, the DOE has listed strategic energy objectives in its 2015 Quadrennial technology review. One of them reads: “Increasing Efficiency of Building Systems and Technologies”. This report notes that in the case of lighting technologies, for instance, 95% of the potential savings due to advanced solid-state lighting remains unrealized due to lack of technology diffusion. This underlines the need for implementation incentives in addition to research and development in the field of building technologies.

In contrast with this dire need for investments in end-use innovation, scientists showed in a 2012 study that the current investment levels in energy related innovation are largely dominated by energy-supply technologies. Energy-supply technologies are those that extract, process or transport energy resources, while end-use technologies are those that improve energy efficiencies and replace pollutant energy sources when feasible with clean sources (e.g. electric buses in cities). The discrepancy is high between supply and end-use investments. End-use technologies only represent about 2% of the total investments in energy innovations, as shown in Figure 2 below.

The consequences are that buildings technologies receive less investment to finance R&D than they should. In addition, the study suggests that end-use investments provide greater return-on-investments than energy-supply investments. The reason for this misalignment is mainly political as public and financial institutions, and policy makers tend to privilege the latter. The authors of the study suggest that this may be linked to a lack of coherent influence or lobbying for the end-use sector in great contrast with large energy supply companies such as oil or nuclear companies. Thus, to make longer strides in reducing our carbon footprint from the energy sector this needs to change.

Victor Fig 2
Figure 2. Investments (or mobilization of resources) for energy technologies, energy efficiency improvements in end-use technologies (green), energy resource extraction and conversion separated into fossil-fuel (brown), renewable (blue), and nuclear, network and storage (grey) technologies. Source: Nature Climate Change, 2(11), 780-788.
Building energy efficiencies: application to the design of better building skins

One way of improving energy efficiency in buildings is by focusing on the design of their skins or envelopes, which shelter their inside from the conditions outside. As interfaces between the controlled interior environment of buildings and the weather variations on the outside, building skins regulate the energy flow between these two environments. High insolation through windows, for instance, can result in large energy consumption needed for cooling the building. The extreme case imaginable would be in a skyscraper with an all-glass façade in a moderate or warm climate. In fact, balancing the heat coming from the sun (mainly through the windows) represents in average almost 50% of the cooling load in non-residential buildings and more than 50% in residential buildings. The warming that climate change will bring to many regions around the world will also make this worse.

Conventional shading devices such as fixed external louvers and Venetian blinds (see examples in Figure 3) can have a strong impact on the reduction of cooling loads. If they are controlled correctly and regularly adjusted, the building’s annual cooling load can be decreased by as much as 20%. 

 

Victor Fig 3
Figure 3. Current shading systems often combine external fixed louvers (left) and interior Venetian blinds (right). Source: Unicel Architecture – Blindtex.

One can add an additional level of performance by making these skins adaptable such that they provide benefits under varying conditions (weather, urban context, occupancy) through the physical change of their geometry. Implementations of such adaptive building skins have demonstrated reduction of energy demand by as much as 51% and high efficiency in moderate to hot climates. For instance, the Al Bahr twin towers (in Abu Dhabi), seen on Figure 4, are a good example of modern building skin implementation.

 

torres-sol-Aedas_Architects_1

Victor Fig 4
Figure 4. Dynamic façade of Al Bahr twin towers, Abu Dhabi, United Arab Emirates. GIF Source: CNN cited by https://www.papodearquiteto.com.br. Pictures’ Source: http://compositesandarchitecture.com/.

As those two systems demonstrate, there is great potential for these advanced shading systems and for building innovation in general, but their development is still slowed down by the lack of innovative policy and desire to invest in energy efficient building technologies.

Let’s get buildings on board with the energy revolution

Buildings do not get as much attention as automobiles or new technologies but they may be equally important in our long-term future. This is because the energy consumed for heating and cooling spaces, lighting, ventilation and others represents a very large part of our total energy consumption. However, there are solutions and fixes to this situation. Buildings have been greatly improved over the 20th century but we need to take them a step further to prepare better, more efficient homes and offices that will meet our new standards of living in a warming world. The facts call for stronger investment and political commitment. Let’s get buildings on board with the energy revolution!

 

charpentier_v-175x200

Victor is a second-year PhD student in the Department of Civil and Environmental Engineering advised by Professor S. Adriaenssens. His research interests lie in reducing energy consumption of buildings and elastic deformation of shell structures. 

A Precarious Puzzle of Expanding Deserts: How arid Asia has varied over time and the confusion over recent desertification

Written by Jane Baldwin

Inner Mongolia (Nei MengGu in Mandarin Chinese) lies right at the border of the nation of Mongolia within mainland China (see Figure 1). Pictures of yurts, traditional pony races, Mongolian wrestlers, and most of all rolling grasslands attract many Chinese tourists to this region each year (see Figure 2). In summer 2009, while I was an undergraduate studying Mandarin Chinese in Beijing, I also became enticed to this region. Tasked by my program to use my newly polished Mandarin to conduct a “social study” in an area outside Beijing, Inner Mongolia seemed both a very foreign and fascinating locale to investigate.

Jane Fig 1
Figure 1. Inner Mongolia, a Chinese province, lies just south of the nation of Mongolia. It is part of the arid lands that stretch across interior Asia. Source: adapted from Nasurt, 2011.

A group of my classmates and I took an overnight train from Beijing to Hohhot, and then a bus far into the countryside to our first yurt encampment. As expected, the great expanse of the scenery was stunning—the landscape stretched out before us only punctuated by occasional small hills, yurts, and sheep. However, we were shocked to discover the lush grasses in pictures were reduced to dry scrub only an inch or two high (see Figure 3).

Jane Fig 2
Figure 2. The Inner Mongolian pastoral ideal branded by Chinese tourist agencies. Source: http://www.chinadaily.com.cn/m/innermongolia/2015-04/10/content_20401697.htm
Jane Fig 3
Figure 3. The state that many grasslands in Inner Mongolia are currently in or approaching following recent desertification. Source: http://www.theguardian.com/world/2015/apr/10/inner-mongolia-pollution-grasslands-herders

I was concerned by this difference, and decided to focus my interviews with the local people on these environmental changes. The local nomadic herders informed me that desertification (or shamohua in Mandarin—literally translated as “change into desert”) had become a serious issue in this region over the past 20 years or so. One herder I interviewed recalled that as a teenager, the grasses had reached as high as his horse’s flank, while now they extended no higher than his horse’s hoof. These observations led me to wonder many questions which did not yield firm answers through my interviews: What was the cause of these dramatic changes? Were the local people responsible for the degradation? Or was it caused by larger scale climate variations outside of their control? And what would be the appropriate policy response to deal with the degradation and still respect the people who had lived there for generations?

__________________________________________________________________________________

Since that summer, this suite of questions around deserts and desertification has inspired much of my study and research, both as an undergraduate and now a PhD candidate in Atmospheric and Oceanic Sciences. My PhD research focuses broadly on understanding the climate of arid and semi-arid regions across Asia that define the margins of these grasslands (see Figure 1). As the largest deserts outside the tropics, this region presents a number of interesting climate dynamics questions. However, through research, classwork, and personal reading I have also sought to understand this region from a variety of angles beyond climatological, in particular geological, historical, and political. While spiraling in towards the desertification question, I have developed a mental narrative for this region, and its changes and controls of its climate over different periods of time.

Observing sediments and fossils, geologists have pieced together a record of arid Asia that shows this region to have varied greatly over the long geological timescales of millions of years. 50 Ma (million years ago), what is now Central and northern East Asia was covered in warm, damp forest populated by ancient horses, and rhino ancestors larger than modern elephants. A few theories exist for what spurred the relatively rapid (few million year-long) transition to the cool, dry climate we know today. Around this time India’s collision with the Eurasian subcontinent was creating the colossal Tibetan Plateau and Himalayas. The longest running theory for the formation of these deserts is that this newly risen topography blocked moisture from reaching Central and northern East Asia, drying this region. Climate modeling studies have indeed indicated that the Tibetan Plateau creates significant aridity outside the tropics in Asia . However, new research presents an alternative theory for the formation of this region. A large inland sea on the western margin of Central Asia, called the Paratethys, was recently found to have retreated just prior to the transition of this region to an arid environment; the migration of this moisture source may have played a dominant role in drying Central Asia. Which of these mechanisms (Tibetan Plateau uplift or the retreating Paratethys) was most important for the drying of Asia, and whether they might be linked, are both still open and actively researched questions.

More recent environmental history (i.e. the past few thousand years) is recorded in tree rings. When trees are water-stressed, how much their trunks grow radially depends in large part on how much rainfall there is. Widths of tree rings thus provide a proxy for historical drought/wet periods. The dry climate of this region over the past few thousand years, and its variations in precipitation recorded in these tree rings are hypothesized to have played key roles in human history, with the most dramatic example being the expansion of the Mongol Empire. Genghis Khan and the nomadic steppe tribes allied with him relied on horses for travel, sustenance, and warfare. Tree rings suggest that during the 13th century when the Mongol Empire expanded to cover China, Central Asia, and parts of the Middle East and Europe, the region was warm and persistently wet; these climatic conditions favored high grassland productivity, supporting Mongol political and military power during this critical period. This is but one example of how climatic and historical changes link tightly in this water-stressed region.

Over the past hundred years, the clearest climatic trend on the global scale has been warming caused by anthropogenic carbon emissions, primarily CO2 released from burning fossil fuels. How this global signal will translate to the regional scale is still a topic of active research in the climate science community. The most recent UN Intergovernmental Panel on Climate Change (IPCC) report shows that warming is clearly predicted over Asia as carbon emissions continue to increase. However, there is little consensus among climate modeling studies regarding how precipitation will change over arid Asia. This uncertainty is concerning for an environment that is already exhibiting symptoms of increasing water-stress. Desertification or land degradation has occurred across the margins of arid Asia over the past few decades, including places as diverse as the former Soviet countries that exist in the Aral Sea drainage basin, Qinghai Province on the Tibetan Plateau, and of course Inner Mongolia. While the UN Convention to Combat Desertification has motivated countries to submit plans to fight this degradation, on-the-ground action has been slow and limited. Facing the double threat of ill-planned development and global warming, these delicate regions on the border of Asia’s great deserts are currently in a precarious position.

__________________________________________________________________________________

While my understanding of arid environments and particularly their variability has increased significantly since I first visited Inner Mongolia in the summer of 2009, the recent desertification of this region is still a puzzle for me and for the scientific community at large. Over the past decade, the Chinese government has tried a number of strategies to deal with the desertification in Inner Mongolia. Citing overgrazing as the cause of the increased aridity, the government has resettled pastoralist nomads into cities—nomads who have grazed the steppe for thousands of years. Since 2003, the total number of urban resettlements in Inner Mongolia is 450,000. Meanwhile, in the tradition of the great engineering emperors of yore, the Chinese government is supporting a “Great Green Wall” of trees planted to halt the expanding desert and decrease dust transport. By the project’s planned end in 2050, it is intended to stretch 4,500km (2,800 miles) along the edge of China’s Northern deserts, covering 405 million hectares—a truly massive endeavor.

Unfortunately, without knowing the root cause of the desertification or how this region will respond to ongoing global warming, it is difficult to predict whether these policies are appropriate. While the Chinese government points its finger at overgrazing, some experts believe that it was the government’s prior actions in this region (fencing land and supporting agriculture over pastoralism) and ongoing mining pollution that has pushed this region away from a sustainable equilibrium and towards desertification. Adding flame to the fire, ecologists and hydrologists wonder whether the Great Green Wall’s trees will grow successfully or just deplete the water supply further. Meanwhile, recent climate studies provide an alternative explanation to these land-use centric arguments, suggesting that non-local climatic causes such as global warming and decreasing East Asian monsoon strength may explain the increasing aridity.

In this quagmire of rapid environmental change and scientific uncertainty one thing is clear: it is critical for there to be a robust dialogue between scientists and policy makers for Inner Mongolia, and the dry climates in Asia at large, to have a chance at developing sustainably.

 

baldwin_j-175x200

Jane is a PhD candidate in Princeton’s Atmospheric and Oceanic Sciences program in joint with NOAA’s Geophysical Fluid Dynamics Laboratory, where she is advised by Dr. Gabriel Vecchi. Her research employs a combination of dynamical climate models and earth observations to elucidate the ties between global and regional climate, and move towards useful predictions of climate change at regional levels.