Assessing the Utility of Food Certifications in Advancing Environmental Justice

Written by Shashank Anand, Hezekiah Grayer II, Anna Jacobson, and Harrison Watson

Sustainability is the notion that we should consume with caution, as the Earth is a delicately balanced ecosystem with limited natural resources. Social justice generally aims to eliminate disparities and inequities between discrete demographics. These include inequalities between persons of different socioeconomic status, race, gender, and sexual orientation. Environmental justice (EJ) intersects both of these movements: EJ is the notion that specific ecological burdens of society should be shared equitably across communities. Historical trends suggest that as we expand, consume, pollute, and produce, the benefits and costs of industrialization are inequitably distributed. This inequality comes at the cost of poor health for those living in highly polluted areas. Inequitable distribution of pollutants has recently brought EJ to the center of political discourse due to its correlation with increased Covid-19 mortality and racially skewed disease outcomes

Unfair treatment of workers at farms and manufacturing plants is a prime example of an injustice that ethical spending can aim to rectify. The misuse of pesticides, low worker wages, poor living conditions for farmers, and child labor are all sources of social and environmental injustices in food production. Socially conscious purchasing could be key in fighting these injustices. Academic institutions, which often purchase food en masse to serve thousands of individuals, have a sizable impact on humanity’s social and environmental footprint. Institutions like Princeton thus have a practical interest in reducing their footprint and a deontological obligation to mitigate their negative societal impact. 

Potential local food purchasing power of fourteen Michigan colleges and universities (Source: Michigan Good Food Work Group Report Series)

In general, it is difficult to assess the relative social and EJ impact of discrete products due to the inherently unquantifiable nature of justice. Certifications like Fair Trade and the Rainforest Alliance attempt to assuage buyers’ concerns by identifying and establishing environmentally just organizations. Certifications like USDA Organic and the Non-GMO Project endorse products and operations from an environmental sustainability standpoint. 

CASE STUDIES

Rainforest Alliance (RA) is an international NGO that provides certifications in sustainable agriculture, forestry, and tourism. RA seeks to “protect forests… and forest communities.” For farmers, the certification process involves site audits that check for compliance with the Rainforest Alliance Standards for Sustainable Agriculture. Standards include child labor protections and worker protection against the use of harmful pesticides listed in the Sustainable Agriculture Network Prohibited Pesticide List. RA Standards address economic and gender disparities on farms through the use of an “assess-and-address” approach. Farms are responsible for setting the goals that will mitigate the effects of “child labor, forced labor, discrimination, and workplace harassment and violence”. RA Standards also enforce implementation of a “salary matrix tool” for the collection of comprehensive wage data and identification of wage gaps. 

Support from RA has historically proven impactful, most notably on certified cocoa farms in Côte d’Ivoire, the world’s largest cocoa producer. A 2011 survey conducted by the Committee on Sustainability Assessment analyzed the impact of RA on the economic, environmental, and social dynamics of these cocoa farms. RA certification was shown to increase school attendance (noted as the percentage of children who have completed the appropriate number of grades for their age) by 392%, thereby reducing child labor; increase crop yields by 172%; and improve farm income by 356% compared to uncertified farms (see figures 4, 6, and 10 at this link). Despite these documented successes, there has been a history of exploitation of previous Standards on certified farms. In 2019, for example, pineapple farms in Costa Rica were cited employing undocumented workers and illegal agrochemicals despite RA restrictions. 

Fair Trade USA (FTU) is a certification that focuses on social and EJ much like RA does. FTU cites ideals in democratic and fair working conditions for its workers. FTU employs an Impact Management System (IMS) towards these ends; the IMS is used to assess the social and economic impact of growers’ practices. FTU is distinct from its well-known parent company, Fairtrade International: the two split in 2012 over a dispute about certified growers’ company size. 

FTU implements a price premium, ensuring that if the market value of a product falls, FTU products have a floor price on store shelves, thus ensuring workers earn some minimum wage. FTU also requires a small additional fee, the “Fair Trade Premium”, on top of the purchase price of the product. The premium is used to improve local infrastructure for the producers. How it is used is decided democratically by workers at the farm. In a poor economy, Fair Trade products are likely to be pricier than their uncertified counterparts. In a thriving economy with high demand, this difference will be negligible (see figure 1 at this link). A 2009 case study of coffee production in Nicaragua found that many Fair Trade coffee producers still had trouble finding places to sell their coffee. In times of high coffee prices, producers found that they reaped little financial benefit from the Fair Trade label. 

The Non-GMO Project (NGP) certifies distributors and farms whose procedures align with “standards consumers expect.” Certification is obtained after evaluation of the presence of genetically modified organisms (GMOs) in produced foods. GMO crops are often bred to be more resistant to drought or pests. This may lead them to outcompete local crops and flora. Combined with the potential unknown behavior of these nonnative crop variants and risk of gene flow, e.g. through cross-pollination, many communities want to keep excessive GMO cultivation out of their neighborhoods. NGP upholds the long-standing Non-GMO Standard, which outlines requirements for companies looking to sport the butterfly label. These standards necessitate greater coordination between cleaning and transference of products between storage facilities (termed “elevators”) as well as increased investments in process monitoring to account for the potential introduction of GMOs along the production process. NGP partners with third-party certification bodies (also known as technical administrators) that audit businesses and farms for compliance with all Non-GMO Standards. Application fees, as well as Non-GMO product premiums, contribute to the conservation of environmental health through the protection of genetic diversity in organic agriculture. 

USDA Organic was created by the Organic Foods Production Act (OFPA) in 1990, which mandated the USDA to develop federal-level regulations in the US for organic food. It was actualized in 2002, after 10 years of public debate, as a compulsory certification requiring producers and handlers with annual organic sales greater than $5,000 to discontinue the use of prohibited substances. To ensure the insulation of formed policies from special interest groups, OFPA also instituted the National Organic Standards Board (NOSB) that includes 15 volunteers representing the consumer, organic farmer/handler, retailer, scientist, and environmental conservationist. A two-thirds majority of NOSB is required to add a material in the National List of Allowed and Prohibited Substances (NLAPS). Third-party certifying agents issue the product as organic after confirming that the producer or handler has discontinued the use of prohibited substances for three years. 

USDA Organic and a growing market for organic produce have resulted in high product premiums. Unfortunately, a booming market does not guarantee good wages, living standards, or fair treatment for farm labor. There are cases recorded where working conditions have worsened due to the heavy work and time demands of organic farming. Some new programs build on USDA Organic’s structure with additional focus on standards for animal welfare and worker fairness. Regenerative Organic Certification (ROC) is an example of such a program. It is too early to determine whether these certification programs will be successful or will earn the trust of the market.

DISCUSSION 

Consumer activism flourishes with effective metrics on desired qualities (e.g., EJ) to inform conscientious purchasing. Certification efficacy for social and EJ depends on two main questions: on a policy level, how relevant are the certifications’ guidelines to the social and EJ movement? In practice, how successfully are rules enforced; are audits thorough, unbiased, and based on clear criteria? These questions help us establish whether certifications actually impact procedure at the farm-level. Certifications lacking in the first quality risk being irrelevant to social and EJ, while certifications lacking in the second risk being inconsequential. 

The missions of certifications like RFA and FTU to enable sustainable livelihoods for farmworkers and promote environmental stewardship are in line with core tenets of social and EJ. However, the auditing processes of these certifications have demonstrated weaknesses, as noted by recent RFA-certified pineapple farms in Costa Rica. Furthermore, the guidelines for these certifications may be poorly communicated with farm workers as shown by a study from Vakila and Nygren on Nicaraguan Fair Trade-certified coffee farms. 

USDA Organic and NGP are more closely aligned with environmental sustainability than social or EJ, yet they have more streamlined auditing processes because sustainability can be more directly quantified (e.g., unit volume of water usage). USDA Organic, for example, strictly regulates pesticides and herbicides, thus protecting farm workers’ health. Prohibited chemicals in NLAPS include methyl bromide, sulfuryl fluoride, and phosphine (aluminum phosphide or magnesium phosphide), exposure to which can affect fetal development and can lead to irreversible damage. NGP, on the other hand, does not regulate chemical substances; on the contrary, the products it promotes forgo the health benefits associated with reduced pesticide use in farming GM crops. In general, many larger social justice themes (minimum wage, underage labor, unfair working conditions) are not addressed by these sustainability certifications. 

The cost of buy-in is one major obstacle for smaller distributors. For example, the harvest process for GMOs and Non-GMOs must be separated to prevent contamination, leading to more labor for farmworkers. Investigations check for use of USDA Organic’s prohibited substances for three years leading up to product harvest; a waiting period that may prove prohibitive to some smaller farms. These smaller farms may not be able to afford the fees of the certification process, or the costs of regulations/liability insurance as required by schools’ procurement offices. Interviews with local players in food distribution, however, alleviated these concerns: Ms. Linda Recine of Princeton Dining Services confirmed that many small farms have difficulties affording the certification label, but asserted that a network of farmers, larger distributors, and university support systems help small businesses obtain necessary certifications and build a sustainable customer base. She cited a pilot conference hosted by the Princeton University Department of Finance and Treasury and Princeton University Central Procurement. This conference focused on woman-, veteran-, and minority-owned businesses; through the conference, Princeton offered to subsidize the first year of various certifications at no cost to the vendor. For obtaining expensive liability insurance, as well, outside help proves paramount: Ms. Recine says that many small farms may be able to get their goods onto campus by partnering with larger distributors. Jim Kinsel of Honeybrook Organic Farm stated that open communication with customers about the certification waiting period usually assuages their concerns about uncertified crops. 

Image of tomatoes being grown on a farm (Source: Canva Images)

Cost of buy-in shows that many certifiable farms may lack a formal label. Additionally, if farms pursuing certification already employ environmentally just practices before they apply for the label, we may see biases which interfere with our ability to assess certification efficacy objectively. A recent meta-study confirmed that many reports investigating the efficacy of certifications did not control for possible selection bias. 

With certifications alone, we are left with an incomplete picture of ethical consumption. If EJ certifications rely on vague self-improvement, sustainability certifications are not as justice-relevant, and all certifications are audited by third parties whose reliability is hard to ascertain, is a certification stamp on a unit of packaging truly enough to assert that a product was ethically produced? The ethical consumer is caught between a rock and a hard place; incomplete information makes it impossible to gauge EJ using certification labels alone. We will need additional information from producers to rely more comfortably on the value of consumer certifications. 

The solution to these concerns may lie in local purchasing. Sarah Bavuso and Linda Recine of Princeton Dining Services emphasized the importance of forming relationships with producers, citing the value of allowing farmers to see the campus and of university officials taking trips to farms and production sites. This relationship allows Princeton to be more hands-on with its food and to interfere when questions of ethics arise. Indeed, a 2007 study suggests that forming relationships with local farms decreases the distance that products travel, allows for cooperative relationships with individual farmers, and introduces flexibility in verification processes. 

Decreasing food-miles through local purchasing may be a critical component of both sustainability and EJ: as food travels and the supply chain lengthens, more middlemen get involved, and there are more opportunities for injustices and unsustainable practices. Each border that food passes through serves as another regulatory vulnerability for the introduction of harmful pesticides and food contamination. At each stop on the road, food loses freshness and emits greenhouse gases (GHGs) by burning fossil fuel through transit. Additionally, laws and regulations are more easily ascertained locally: consumers are more likely to know the minimum wage and regulations on working conditions for farms near their own homes. 

Local farms may also be smaller and more sustainable than larger national chains. Mr. Kinsel claims that larger farms are more likely to cut corners in the name of profit. While Ms. Recine confirms that larger producers may be less inclined to act ethically, she states that these farms have “come a long way” towards humane and ethical behavior, largely thanks to students and universities vocally lobbying for causes that were important to them. Purchasing certified food that is also locally grown may address many of the concerns introduced by the information gap mentioned above. 

Image of vegetables displayed at an outdoor stand (Source: Canva Images)

CONCLUSION 

Rather than relying entirely on certifications like USDA Organic, a supply chain can be created where the university shares the risk of crop production under unpredictable hydroclimatic conditions with the local farming community. One realization of a more local supply chain is Community Supported Agriculture (CSA), where schools select membership for a season and receive fixed volumes of freshly harvested produce from local farms. Students receive fresh and nutritional food from farms that abide by local regulations. Farmers get money from subscriptions upfront, allowing them to expand and invest early. Schools build working relationships with constituent farms and their management, creating a point-person on the farm grounds who can verify safe conditions for farmers. Many local farms in the Princeton area (like the Snapping Turtle Farm and the Cherry Grove Organic Farm) already have some of the same certifications as larger factory farms. 

A CSA supply chain would fit neatly into many residential colleges for small portions of salads or boiled eggs and meats. Non-perishable products like crackers and cereals could still be purchased from larger certified producers. In this supply chain, certifications are relied upon for goods that are difficult to buy from local producers. The local economy around the university is enhanced by the CSA program employed for fruits, vegetables, and meats. There are, of course, logistic questions to be resolved: a supply chain where crop proportions are not predetermined is quite different from the institutional status quo. The feasibility of such a supply chain will likely need to be vetted through a pilot program or a case study of other institutions implementing a similar program. CSAs have been implemented on some scale at schools like the University of KentuckyRutgers University, and the New Jersey Institute of Technology. We suggest schools start small: by implementing a CSA supply chain in an on-campus cafe or residential college. The program can be scaled up over time, after feasibility studies and conversations with local farmers. 

The feasibility of establishing a local supply chain will depend on how universities currently source their food. Ms. Bavuso indicated that many schools fall into one of two classes: self-operated schools, whose food procurement departments are university-run and in-house, and non-self-operated schools, whose food procurement is outsourced via contracts. Many schools employ some combination of these operations, with state schools being particularly strictly regulated via contracts (Aramark, University of Delaware; Sodexo, The College of New Jersey). Self-operated schools like Princeton will likely have more flexibility in vetting and choosing vendors. Non-self-operated schools aiming for social change will likely have to do so by lobbying distributors through the schools’ purchasing power or threatening to withdraw their business if practices are not improved. Not all schools will have the means to investigate each food product on their shelves: it will likely be useful to leverage an inter-school consortium of food procurement research, see the National Association of College & University Food Services, allowing inter-institutional procurement departments to swap findings and relevant research. 

The authors of this article do not wish to claim that certifications are entirely ineffective in gauging the social and EJ of food procurement. But certifications are not a panacea for ethical supply chains. Universities relying solely on these certifications for assessing food safety and social and EJ are not doing due diligence when it comes to ethical spending. It may take additional effort to switch to a CSA-style supply chain like the one suggested above; but if institutions are serious about the values that they promote in their dining services brochures, this added effort will be well worth the improvement seen in the quality and justice of the campus food. 

Princeton’s president Christopher Eisgruber wrote in June of 2020: “As a University, we must examine all aspects of this institution — from our scholarly work to our daily operations—with a critical eye and a bias toward action. This will be an ongoing process, one that depends on concrete and reasoned steps[.]” The authors of this article believe that a CSA pilot program would be one such concrete step towards action, a step that would be directly in line with the larger themes of environmental and social justice that have become more pronounced in the societal collective consciousness during recent years. At the very least, it is the duty of university procurement departments to state the steps they intend to take to address inequity. Princeton’s recent Supplier Diversity Plan is one example of such an effort in that it aims to support more diverse-owned businesses. As entities with large economic impacts, universities do have the power to effect real societal change. 


Shashank Anand: I am a Ph.D. Candidate in the Department of Civil and Environmental Engineering, working with Prof. Amilcare Porporato. My research focuses on understanding the role of ecohydrological and geomorphological processes in the evolving landscape topography by analyzing process-based models and learning from the available observations.

Hezekiah Grayer II: I am a 2nd year PhD candidate in the Program in Applied and Computational Mathematics, where I am fortunate to advised by Prof. Peter Constantin. My academic goals intersect fluid mechanics, plasma physics, and partial differential equations.

Anna Jacobson: I am a 3rd year PhD candidate in the department of Quantitative and Computational Biology. I am affiliated with the Andlinger Center for Energy and the Environment and the High Meadows Environmental Institute. For my thesis work, I study energy systems and environmental policy.

Harrison Watson: I am a Ph.D Candidate in the Department of Ecology and Evolutionary Biology working with Professors Lars Hedin, Rob Pringle, and Corina Tarnita. My work currently focuses on clarifying the forces that influence land carbon cycles using eastern and southern African savannas as a study system.

Sowing the Seeds of Environmental Justice in Trenton

Written by Laurel Mei-Singh

(Source: Trenton People’s Bookfair)

Magnificent, a hairdresser who lives and works in downtown Trenton, New Jersey, is one of ten adults gathered together in a community space. Meanwhile, an equal number of children paint pots outside, fill them with soil, and plant seeds to grow. On the topic of the lead-contaminated water flowing from the taps of many city homes, Magnificent asks, “What can we do, as a community, to address this issue?” This is Earth Day at the Orchid House: Sowing the Seeds of Sustainability and Justice, planned by the organizing committee of the Trenton People’s Bookfair and the SAGE Circle. We are discussing environmental justice issues in Trenton, a place just fourteen miles from Princeton but worlds apart in terms of access to resources such as clean water.

Environmental justice means that all people have a right to a safe and healthy environment with clean drinking water, fresh food, and life-supporting homes. Its inverse, environmental racism, means that environmental hazards disproportionally shape the landscapes and lives of people of color. A 1987 report, Toxic Waste and Race in the United States, and a 2007 report, Toxic Waste and Race at Twenty, confirm that race stands as the most potent indicator of proximity to commercial hazardous waste facilities. Why? Because a long history of racist policies has shaped places in the United States along racial lines, concentrating people of color in areas often near toxic sites while cleaving places into segregated spaces partitioned by highways, train tracks, and walls. The development of industrial facilities in areas populated by people of color shaped US cities in the twentieth century as white people moved to suburbs—a state-subsidized project that ballooned after World War II. Further, the Federal Housing Authority’s A-D ranking system from 1934-1968 used the racial composition of neighborhoods as criteria for insuring private loans, making it nearly impossible for Black people to obtain a mortgage.

Residential “security map” of Trenton, NJ with A-D “area descriptions” from the 1937 records of the Home Owners’ Loan Corporation. (Source: Mapping Inequality Project, University of Richmond)

Responding to these conditions, community leaders in Warren County, North Carolina merged the environmental and civil rights movements in the late 1970s to address toxic dumping in their predominantly Black community. This became the environmental justice movement, which sought to incorporate environmental problems confronting communities of color into growing mainstream environmental consciousness. Urban centers, such as Trenton, are what Ruth Wilson Gilmore, director of the Center for Place, Culture, and Politics and professor of Earth and Environmental Sciences at the City University of New York (CUNY) Graduate Center, describes as “sinks of hazardous materials and destructive practices.” This is largely due to the organized abandonment of “marginal people on marginal lands.”

. . .

Most who live in Trenton know not to drink water straight from the tap. It became obvious after I moved into my Mill Hill home in 2016 that the water tasted oddly metallic and slightly rotten, and we began to buy 5-gallon jugs from the grocery store, the kind that pull your back when you lift them up if you’re relatively small like me. Soon after, news outlets began to report that Trenton’s water supply is contaminated with lead; lead poisoning is dangerous for young children, causing developmental delays and learning challenges, and affects adults too. Even more disturbingly, test results from a 2016 study showed that twenty of the Trenton Public School District’s twenty-six buildings have at least one sink or water fountain emitting water with lead concentrations that exceed the Environmental Protection Agency’s “action level” of 15 parts per billion. At Daylight/Twilight, a high school in downtown Trenton across the street from where we held our Earth Day event, a sink had levels as high as 1,600 parts per billion. Despite this study and media acknowledgement that Trenton Water Works has become a “failure” as a public utility, public officials have failed to communicate with Trentonians about the risks of drinking its water and how to remediate it. A July 31, 2018 letter sent to Trenton residents from Trenton Water Works indicates that contamination stems from lead service line pipes, banned for use since 1960. An added insert acknowledges that, “We violated a drinking water requirement” due to the fact that they failed to replace 7% of the lead service lines within one year of action level exceedance.

This neglect stems from the fact that Trenton is a “forgotten place,” typically regarded by its middle-class neighbors through the skewed lens of racist and dehumanizing tropes, particularly violence and poverty. But how did we get here?

Depiction of Trenton, NJ drawn circa 1882. (Source: Industries of New Jersey by Richard Edwards)

Multiple historical events have shaped Trenton’s environment. For centuries, the Lenape people lived in organized communities along the shores of the Delaware River until the 18th and 19th centuries, when genocidal projects displaced and killed many, while some remain in the region today. In 1679, Quakers led by Mahlon Stacy established a town called Falls of the Delaware and built a gristmill. William Trent purchased this land in 1714 and expanded the mill to become the major source of commerce—made possible by slave labor. In the 1800s, industrialists began to manufacture pottery, iron, and steel. The 1920s brought automation, mergers and consolidations, and attacks on organized labor. In the 1960s, businesses began to close shop in search of cheaper labor, and people with nominal wealth and resources capitalized on the expanding highway system, one cutting through the heart of the city, and moved to suburbs. The aforementioned race-based housing policies enhanced racial segregation, and white flight in Trenton’s environs continues today. While economic development often inoculates the wealthy from the ravages of capitalism, the disenfranchised—whose poverty contours along racial lines—must fight for their very lives. The famous Trenton riots of April 1968 that followed the assassination of Martin Luther King expressed the anger and frustration of the Black community confronting concentrated poverty and unemployment.

Mayor Carmen Armenti talking to Trenton residents after the riots of April 1968. (Source: Times of Trenton file photo)

A few decades later, the NJ Department of Transportation’s construction of the Route 29 extension that began in 1998 destroyed one of the city’s remaining environmental treasures: “a corridor of sycamore trees along the [Delaware] river’s embankment.” This cut off “the community’s once free and easy access to the water’s edge.” This area was once called “South Trenton’s Jersey Shore,” where kids swung from rope swings and frolicked in the water while adults fished upriver. Today, Trenton is full of contradictions. Trentonians rarely cross the highway to reach the Delaware River shore, despite their proximity to the water. The 2008 financial collapse largely thwarted aspirations for redevelopment and wrought a foreclosure crisis exacerbated by skyrocketing taxes. At the same time, Trenton is a vibrant and close-knit place, where “everyone knows your business [and] your neighbors watch your back.” It hosts city treasures like the Trenton Coffee House and Vinyl, Championship Bar, and Classics Books. Its current revitalization can be attributed in part to recent migrants from Central America.

Video of a performance by the band Buy Nothing, featuring Abdul Wiswall, owner of Trenton Coffee House and Roaster, performing a song about Trenton’s lead contaminated drinking water. (Source: Tess Jacobson).

I recount this history to show that, when tackling environmental racism in Trenton, a narrow focus on the intentional decisions of racist individual policymakers cannot possibly address the myriad environmental injustices that the people of Trenton face. Rather, the issue of lead poisoning and the failure of those with political power to address this problem cannot be separated from long and overlapping histories of racism, capitalist restructuring, and careless development plans literally built into the environment. Addressing this issue requires first and foremost an awareness of the many processes that have historically produced the organized abandonment of the city.

This brings us back to Magnificent’s inquiry: What can we do, as a community, to address this issue, or rather, all of these issues? Some of my neighbors believe that only two options exist for Trenton: the current state of disinvestment OR gentrification, the latter of the green variety that entails the planting of trees and the revitalization of waterways for tourists and professionals moving into the city. Yet neither of these options will serve people already living there, those who can barely pay the bills for the lead-contaminated water.

New Jersey-based public health psychiatrist Mindy Fullilove argues that when considering these rooted, metabolic connections of people to places a third way is possible. She calls this “Urban Alchemy.” It calls for holistic redevelopment grounded in community-based planning and collective place-making, a process that requires the coming together of people to fight for the whole. It calls for “unpuzzling fractured spaces” so that people can move freely and reconnect with people and places, for example, heeding calls to remove the Route 29 freeway. While bottom-up strategies such as urban alchemy are needed, strategies such as “social urbanism” involve government investment in infrastructure and services for the poor, including clean water and improved transit. These are the keys to an urban ecology that promotes environmental health and general well-being.

The organizing committee of the Trenton People’s Bookfair has initiated this process by opening up space to collectively envision what environmental justice means. We support not only lead-free water, but also community-based agriculture and arts, mom and pop stores, the retrofitting of abandoned buildings to benefit neighborhoods, sanctuary spaces for migrants, an anti-exploitative economy, and restorative justice and rehabilitation not incarceration. Grassroots, collective learning and visioning can serve as a foundation to make Trenton a healthier place, with clean water and other life-sustaining resources. It can spur informed action grounded in the daily lives and experiences of people living in the city, and in solidarity with people in places like Flint, Michigan.

This work does not aim for a balance between development and sustainability, or, in the case of Trenton, between gentrification and sustainability. This is a false choice. Planning and development must work to recuperate our connections to resources so that we can make thriving places for all, for many generations. The environment isn’t a distant place for recreation. It’s here, in our homes and neighborhoods, wholly embedded in our social and political life. Our environment makes the difference between a healthy life enriched by vibrant community and one cut short by toxic exposure. Consider not only the water we drink but also the food we eat and the systems that bring them onto our plates, the places we mingle with neighbors, the air we breathe and the industries that pollute it, the jobs we work and how our labor interacts with land to produce profit, our modes of transportation, and our systems of waste disposal, to offer a few examples.

Our efforts can take cue from environmental justice activists who have engaged in collective action for decades to envision economic and social alternatives that affirm all forms of life. Most importantly, this work recognizes that our communities and our environments are wholly interconnected, shaping our lives, livelihoods, and life chances, and the urgency of making our cities and neighborhoods life-affirming places for all.

This year’s Trenton People’s Bookfair will focus on environmental justice and will be held on October 6, 2018.

(Source: Trenton People’s Bookfair)

 

Laurel Mei-Singh recently completed a postdoctoral fellowship in American Studies at Princeton University and now serves as an Assistant Professor of Ethnic Studies at the University of Hawai‘i. She is currently writing a book that develops a genealogy of military fences and grassroots struggles for land and livelihood in Wai‘anae, Hawai‘i. You can reach her at meisingh@hawaii.edu.

Pulp Non-fiction

Written by Timothy Treuer

A story (but careful, there’s a twist):

In 1998, the Costa Rican Sala Cuarta (their highest judicial body) issued a ruling against a company that had dumped 12,000 tonnes of waste orange peels in one of the country’s flagship protected areas, Área de Conservación Guanacaste (ACG). The ruling came at the urging of some members of the Costa Rican environmental community, and studies had found elevated levels of d-limonene–a suspected carcinogen–in local waterways as a result of the company’s actions, raising tensions with neighboring Nicaragua over the possible pollution of their downstream eponymous lake. The court ruling demanded the immediate removal of the orange peels from where they lay–a site that some had labeled ‘an open air dump.’

A keen observer at the time would have noted one immediate hiccup with the court’s order: those 12,000 tonnes of orange waste? They didn’t exist anymore.

Six months of unfathomable ecstasy on the part of four species of flies had converted the mega pile o’ peels into several inches of black, loamy soil, smothering the invasive African grass that had previously dominated the heavily degraded corner of the national park. Oh, and d-limonene? Turns out it’s more of a cancer-fighter than a cancer-causer (See Asamoto et al. 2002 Mammary carcinomas induced in human c-Ha-ras proto-oncogene transgenic rats are estrogen-independent, but responsive to d-limonene treatment. Japanese Journal of Cancer Research), and can now be purchased on Amazon for $0.16/gram (note I do NOT endorse herbal supplements as a general rule–talk to your doctor if you or your transgenic rat suffer from mammary carcinomas).

See, the orange peel dumping was actually part of a grand plan hatched by rockstar ecologist turned conservationist, Dan Janzen (best known for his hit singles like ‘Herbivores and the Number of Tree Species in Tropical Forests’ and ‘Why Mountain Passes Are Higher in the Tropics’, but I prefer his deep tracks ‘How to be a fig’ and ‘Mice, big mammals, and seeds: it matters who defecates what where’). He and his partner Winnie Hallwachs had noted the following upon observing the development of a huge new orange juice processing facility on ACG’s northern border by a company called Del Oro: (1) most people don’t like peels in their orange juice, (2) megatonnes of orange peels probably weren’t the easiest thing to deal with on the cheap, and (3) of the 170,000+ species of creature in ACG’s forests, at least one probably would nosh some citrus rind. Upon discovering that Del Oro planned to construct a multi-million dollar plant to turn their waste into low-grade cattle feed, Dan and Winnie engineered the following plan:

  1. Dump orange peels on former cattle ranches recently incorporated into ACG.
  2. Fly orgy.
  3. Profit.

Amazingly this plan nearly worked perfectly! Del Oro was all over the idea of getting a little weird with ACG. After a promising test deposition of 100 truckloads of orange peels in 1996, Del Oro and ACG signed a contract wherein the park would provide waste disposal (and interestingly, formalized water provisioning and pest management ecosystem services that Del Oro enjoyed by virtue of being neighbors with a fat block of mountainous rain-, cloud- and dry forest) in exchange for donating a huge amount of still-forested land that they owned on the ACG border. Janzen threw in some ecological consultation and help in getting eco-friendly certifications as a sweetener. A seemingly beautiful win-win deal.

But of course, we can’t have nice things.

You may have already pieced together what happens next: after executing the first year of the contract wherein Del Oro trucked in ~12,000 metric tonnes of peels and pulp into a heavily degraded corner of ACG that was seemingly caught in a state of arrested succession, a rival orange juice company caught wind of the party, and did as one does when they get spurned by a guest list omission: they sued.

And won.

What seemed to get lost in the debates that raged at the time though, was what effect all these orange peels would have on the forest itself. Dan and Winnie had the intuition that killing off the fire-prone grass and adding nutrients to a plot of land that had been continuously trampled by bovid beasties for a couple hundred years would be a positive change for an aspiring forest, but that wasn’t a certainty.

In 1998, 1000 truckloads of orange peels were deposited in a degraded section of Costa Rica’s Área de Conservación Guanacaste (ACG). (Photo courtesy of Daniel Janzen and Winnie Hallwachs)

After the fallout from the lawsuit and the court ruling, it’s understandable that Dan, Winnie, and ACG’s staff didn’t want to draw too much attention to the site (a couple of ACG officials nearly were thrown in jail for failing to adhere to the court order). They visited a few times early on to photograph the progress, and sent a botanist in the very early years to write down what species of plants were occurring in the fertilized area and the surrounding pasture, but other than that the project was more or less consigned to the quirky annals of ACG history (alongside such fascinating historical tidbits as a starring role in the Iran-Contra Affair–read the book Green Phoenix by Bill Allen for the full fascinating history of the park).

The reason I’m relating this story is that some collaborators and I started revisiting this site a few years ago, and we were so blown away by what we saw that we had to tell the world. The area where the orange peels had been? It had become just about the lushest forest I’d ever seen. Literally, vines on vines on vines. And the surrounding pasture? Still pretty much looked the same as in old photos.

In the summer of 2014, I set up Princeton senior thesis student Jon Choi ‘15 at the site, and let me just say, he scienced the crap out of it. We set up some vegetation transects and developed a soil sampling regime, and then he went full Tasmanian Devil in a labcoat. We’re talking camera traps, audio recorders, pitfall traps, and theoretical modelling of ecological state transitions–the whole nine meters. It truly impresses me that he managed to say so much about what ultimately boils down to a very simple observation: orange peels jump-started forest recovery–where there would otherwise be a stunted savanna, there’s now forest so thick you literally have to hack your way through with a machete.

Images from early 2014 of the unfertilized, control site (left) and the site that had been fertilized with orange peels in the 1990s (right). (Photos courtesy of Timothy Treuer)

After a few years of trying to distill this work into something palatable to reviewers, journal editors, and our team of co-authors, we are proud to finally drop our LP: ‘Low-cost agricultural waste accelerates tropical forest regeneration,’ available exclusively from Restoration Ecology.

In all seriousness, I really do believe there’s an incredibly exciting idea at the core of this project: it wasn’t just a win-win initiative. It was win-win-WIN. Carbon was sucked out of the atmosphere, biodiversity was increased, and soil quality improved. All FOR A PROFIT! Despite this, we couldn’t find a single other example of ag waste being used to speed forest recovery. We hope that changes. The world really shouldn’t contain both nutrient-starved degraded lands and nutrient-rich waste streams.

Tim is a PhD candidate in Ecology and Evolutionary Biology studying large-scale tropical forest restoration. More broadly, he is interested in the effective communication of and policy solutions to complex environmental challenges in an era of global change. He’s on Twitter (@treuer) and tumblr (treuer.tumblr.com).

A Healthy Mind in a Healthy Body: Towards universal healthcare

Written By Arvind Ravikumar

The third Sustainable Development Goal (SDG3), as adopted in the 2015 UN General Assembly meeting, strives to “ensure healthy lives and promote well-being for all at all ages” by 2030. There are nine targets specified under this goal that can be broadly classified into four categories: (1) decreasing maternal and child mortality, (2) reducing the incidence of diseases, (3) reducing human-caused mortality including substance abuse and road-traffic incidents, and (4) expanding access to affordable health care. Compared to prior efforts, SDG3 provides renewed focus on issues like substance abuse, mental health and affordable health-care for all – issues that affect the developed world as much as the developing world. The SDG3 builds on and expands the health-focused millennium development goals that were adopted in 2000. Indeed, the world community has made significant progress in reducing child mortality, maternal mortality, access to reproductive health, and reducing the incidence of HIV/AIDS and tuberculosis. However, many of these reductions are far from the targets established in the MDGs – for example, maternal mortality has reduced from 386 deaths per 100,000 live births in 1990 to about 216 in 2015, significant but far short of the target of 70 maternal deaths per 100,000 live births. More importantly, progress has been uneven, especially across the poorest and the most disadvantages populations in the world.

mmr

Worldwide maternal mortality rate: Number of maternal deaths per 100,000 live births (Source: Wikipedia)

Progress toward any of these goals is only as good as the monitoring mechanisms in place. In this context, the SDGs differ markedly from the last decade’s MDGs because of the development of sustainable development goal indicators – these ‘indicators’ refer to various statistical health data that track progress and keep various countries accountable. A thorough global database on these specific indicators and other metrics is already available. And that highlights one of the major problems in all global development goals – the lack of institutional support and robust data collection from many regions (especially in parts of Oceania, and sub-Saharan Africa) hinders any attempt to track progress. Lessons from other global governing bodies like the World Trade Organization (WTO) could help – one way would be to develop regional expertise within the UN to help developing countries better monitor their efforts.

This goal to improve health outcomes through specific and measurable targets might make the issue seem tractable. However there are important challenges in the years ahead that are exacerbated by globalization and improved mobility. For example, road-accident related fatalities have been increasing in the developing world because of economic development. Record numbers in global mobility will simultaneously increase the risk of spawning epidemics like Ebola or Zika, which would demand a robust and rapid global response to contain its spread. The rapid urbanization in developing countries like China and India will further strain urban infrastructure – without massive investments, urban pockets are in danger of becoming hot beds for water-borne and other communicable diseases. And finally, the recent uptick in global conflicts has resulted in over 60 million people being displaced – a number not last seen since World War II. Any global effort to improve health-care will need to be coordinated with other goals that directly affect health outcomes.

While there are many targeted policies that will directly influence healthcare and wellbeing, it would be naïve to assume that improving global health standards is not dependent on progress across many of the other SDGs. For example, access to clean water and improved sanitation (SDG #6), especially in rapidly developing urban areas in Asia and Africa, can significantly reduce the incidence of many communicable diseases. A growing body of research also show that the physical and social environment (SDG #11) can influence the life expectancy at birth – such stark differences can even be seen in the developed world. Recent experiences in reducing the prevalence of AIDS or improving access to reproductive health-care have shown how unequal progress has been – big gaps exist between the poorest and the richest households, between men and women, and between rural and urban regions. Progress even in regional health outcomes would be strongly tied to success in reducing inequalities (SDG #5, #10) and increasing girls’ educational attainment (SDG #4).

Ultimately, the biggest test for the success of any of these programs comes in the form of investments required – capital to the tune of trillions of dollars will have to be mobilized over the next 15 years, largely through public finance and aid. Recent rounds of talks have ended without any concrete commitments in the part of the developed nations. It is not yet clear if equitable mechanisms to fund massive improvements in infrastructure and health-care initiatives across large parts of sub-Saharan Africa and Asia will be available.

 


Profile

Arvind graduated with a PhD in Electrical Engineering from Princeton University in 2015 and is currently a postdoctoral researcher in Energy Resources Engineering at Stanford University. His professional interests currently lie at the intersection of energy, climate change and policy. Arvind is an Associate Editor at Highwire Earth. Follow him on Twitter @arvindpawan1.

A World Without Hunger

Written by Matt Grobis

Safe, nutritious, and sufficient food, all year, for all people: the United Nation’s second Sustainable Development Goal aims to transform the world’s agriculture and distribution of food by 2030. With 800 million people suffering from hunger – more than 10% of the world’s population – food and agriculture are key to achieving the entire set of sustainable development goals.

Currently, there exists enough food to supply every person on the planet with a nutritious diet. Yet, large imbalances in access to this food also exist. This is often due to the cycle of poverty: people in poverty cannot afford nutritious food, which weakens them and then limits their ability to earn enough money to escape poverty. The results can be devastating. Poor nutrition is responsible for nearly 45% of deaths in children under 5, as well as causing a quarter of the world’s children to be stunted, or unable to develop normally.

Feeding future generations is similarly troubling. We have dedicated approximately 11% of the world’s land surface to agriculture (1.5 billion hectares), but to feed an expected 9 billion people in 2050, we will have to expand our global food production by 60%. Where will this land come from? We can work to improve crop yield from existing land, but the Food and Agriculture Organization (FAO) cautions that in many cases, local socioeconomic conditions “will not favor the promotion of the technological changes required to ensure the sustainable intensification of land use.” In other words, we can increase our food yield, but do we have the infrastructure in place to do it sustainably?

These are formidable challenges that require fast, efficient, and long-lasting solutions. By no exaggeration, the wellbeing and lives of billions of people – both present and future – depend on the actions taken to address hunger. The UN has therefore made ending world hunger a priority. “We can no longer look at food, livelihoods and the management of natural resources separately,” the FAO wrote in their 2016 bulletin Food and Agriculture. “A focus on rural development and investment in agriculture – crops, livestock, forestry, fisheries and aquaculture – are powerful tools to end poverty and hunger, and bring about sustainable development.”

A World Without Hunger
Mud stoves in Darfur, Sudan. Promoted by the Food and Agriculture Organization of the United Nations since the 1990s, these stoves decrease the need for fuelwood, a limited resource that can be dangerous to gather. Photo credit: plancanada.ca

How can we address problems as pervasive as hunger, when those problems are intimately linked with Earth’s other greatest challenges, such as poverty and climate change? For the FAO, the answer is to find solutions that address as many of these challenges simultaneously. In Darfur, Sudan, for example, the FAO is working to introduce fuel-efficient stoves that reduce the need for fuelwood, the principal source of energy that is becoming an increasingly limited natural resource. Women must travel far from home to collect fuelwood, which decreases the time they can invest in childcare, work, or education while also exposing themselves to the risk of physical or sexual violence. Mud stoves, on the other hand, require less fuelwood and produce no smoke. The local production of these stoves generates income for women.

“Tackling hunger and malnutrition is not only about boosting food production, but also to do with increasing incomes, creating resilient food systems and strengthening markets so that people can access safe and nutritious food even if a crisis prevents them from growing enough themselves.”
– Food and Agriculture Organization of the United Nations, Food and Agriculture

For Darfur, fuel-efficient stoves not only improve food security, hence addressing the UN’s second sustainable development goal of eradicating hunger. They also help decrease poverty (SDG #1), and they promote health and wellbeing (#3), gender equality (#5), affordable and clean energy (#7), climate action (#13), and protecting life on land (#15). Addressing the world’s largest challenges will require such multifaceted approaches.

 

12294849_10153775810177152_1904629783367632173_n

Matt Grobis is a 4th-year PhD candidate in Ecology and Evolutionary Biology and the Managing Editor of Highwire Earth. He researches the collective dynamics of fish schools in response to predation risk. Follow him on Twitter @mgrobis.

A Precarious Puzzle of Expanding Deserts: How arid Asia has varied over time and the confusion over recent desertification

Written by Jane Baldwin

Inner Mongolia (Nei MengGu in Mandarin Chinese) lies right at the border of the nation of Mongolia within mainland China (see Figure 1). Pictures of yurts, traditional pony races, Mongolian wrestlers, and most of all rolling grasslands attract many Chinese tourists to this region each year (see Figure 2). In summer 2009, while I was an undergraduate studying Mandarin Chinese in Beijing, I also became enticed to this region. Tasked by my program to use my newly polished Mandarin to conduct a “social study” in an area outside Beijing, Inner Mongolia seemed both a very foreign and fascinating locale to investigate.

Jane Fig 1
Figure 1. Inner Mongolia, a Chinese province, lies just south of the nation of Mongolia. It is part of the arid lands that stretch across interior Asia. Source: adapted from Nasurt, 2011.

A group of my classmates and I took an overnight train from Beijing to Hohhot, and then a bus far into the countryside to our first yurt encampment. As expected, the great expanse of the scenery was stunning—the landscape stretched out before us only punctuated by occasional small hills, yurts, and sheep. However, we were shocked to discover the lush grasses in pictures were reduced to dry scrub only an inch or two high (see Figure 3).

Jane Fig 2
Figure 2. The Inner Mongolian pastoral ideal branded by Chinese tourist agencies. Source: http://www.chinadaily.com.cn/m/innermongolia/2015-04/10/content_20401697.htm

Jane Fig 3
Figure 3. The state that many grasslands in Inner Mongolia are currently in or approaching following recent desertification. Source: http://www.theguardian.com/world/2015/apr/10/inner-mongolia-pollution-grasslands-herders

I was concerned by this difference, and decided to focus my interviews with the local people on these environmental changes. The local nomadic herders informed me that desertification (or shamohua in Mandarin—literally translated as “change into desert”) had become a serious issue in this region over the past 20 years or so. One herder I interviewed recalled that as a teenager, the grasses had reached as high as his horse’s flank, while now they extended no higher than his horse’s hoof. These observations led me to wonder many questions which did not yield firm answers through my interviews: What was the cause of these dramatic changes? Were the local people responsible for the degradation? Or was it caused by larger scale climate variations outside of their control? And what would be the appropriate policy response to deal with the degradation and still respect the people who had lived there for generations?

__________________________________________________________________________________

Since that summer, this suite of questions around deserts and desertification has inspired much of my study and research, both as an undergraduate and now a PhD candidate in Atmospheric and Oceanic Sciences. My PhD research focuses broadly on understanding the climate of arid and semi-arid regions across Asia that define the margins of these grasslands (see Figure 1). As the largest deserts outside the tropics, this region presents a number of interesting climate dynamics questions. However, through research, classwork, and personal reading I have also sought to understand this region from a variety of angles beyond climatological, in particular geological, historical, and political. While spiraling in towards the desertification question, I have developed a mental narrative for this region, and its changes and controls of its climate over different periods of time.

Observing sediments and fossils, geologists have pieced together a record of arid Asia that shows this region to have varied greatly over the long geological timescales of millions of years. 50 Ma (million years ago), what is now Central and northern East Asia was covered in warm, damp forest populated by ancient horses, and rhino ancestors larger than modern elephants. A few theories exist for what spurred the relatively rapid (few million year-long) transition to the cool, dry climate we know today. Around this time India’s collision with the Eurasian subcontinent was creating the colossal Tibetan Plateau and Himalayas. The longest running theory for the formation of these deserts is that this newly risen topography blocked moisture from reaching Central and northern East Asia, drying this region. Climate modeling studies have indeed indicated that the Tibetan Plateau creates significant aridity outside the tropics in Asia . However, new research presents an alternative theory for the formation of this region. A large inland sea on the western margin of Central Asia, called the Paratethys, was recently found to have retreated just prior to the transition of this region to an arid environment; the migration of this moisture source may have played a dominant role in drying Central Asia. Which of these mechanisms (Tibetan Plateau uplift or the retreating Paratethys) was most important for the drying of Asia, and whether they might be linked, are both still open and actively researched questions.

More recent environmental history (i.e. the past few thousand years) is recorded in tree rings. When trees are water-stressed, how much their trunks grow radially depends in large part on how much rainfall there is. Widths of tree rings thus provide a proxy for historical drought/wet periods. The dry climate of this region over the past few thousand years, and its variations in precipitation recorded in these tree rings are hypothesized to have played key roles in human history, with the most dramatic example being the expansion of the Mongol Empire. Genghis Khan and the nomadic steppe tribes allied with him relied on horses for travel, sustenance, and warfare. Tree rings suggest that during the 13th century when the Mongol Empire expanded to cover China, Central Asia, and parts of the Middle East and Europe, the region was warm and persistently wet; these climatic conditions favored high grassland productivity, supporting Mongol political and military power during this critical period. This is but one example of how climatic and historical changes link tightly in this water-stressed region.

Over the past hundred years, the clearest climatic trend on the global scale has been warming caused by anthropogenic carbon emissions, primarily CO2 released from burning fossil fuels. How this global signal will translate to the regional scale is still a topic of active research in the climate science community. The most recent UN Intergovernmental Panel on Climate Change (IPCC) report shows that warming is clearly predicted over Asia as carbon emissions continue to increase. However, there is little consensus among climate modeling studies regarding how precipitation will change over arid Asia. This uncertainty is concerning for an environment that is already exhibiting symptoms of increasing water-stress. Desertification or land degradation has occurred across the margins of arid Asia over the past few decades, including places as diverse as the former Soviet countries that exist in the Aral Sea drainage basin, Qinghai Province on the Tibetan Plateau, and of course Inner Mongolia. While the UN Convention to Combat Desertification has motivated countries to submit plans to fight this degradation, on-the-ground action has been slow and limited. Facing the double threat of ill-planned development and global warming, these delicate regions on the border of Asia’s great deserts are currently in a precarious position.

__________________________________________________________________________________

While my understanding of arid environments and particularly their variability has increased significantly since I first visited Inner Mongolia in the summer of 2009, the recent desertification of this region is still a puzzle for me and for the scientific community at large. Over the past decade, the Chinese government has tried a number of strategies to deal with the desertification in Inner Mongolia. Citing overgrazing as the cause of the increased aridity, the government has resettled pastoralist nomads into cities—nomads who have grazed the steppe for thousands of years. Since 2003, the total number of urban resettlements in Inner Mongolia is 450,000. Meanwhile, in the tradition of the great engineering emperors of yore, the Chinese government is supporting a “Great Green Wall” of trees planted to halt the expanding desert and decrease dust transport. By the project’s planned end in 2050, it is intended to stretch 4,500km (2,800 miles) along the edge of China’s Northern deserts, covering 405 million hectares—a truly massive endeavor.

Unfortunately, without knowing the root cause of the desertification or how this region will respond to ongoing global warming, it is difficult to predict whether these policies are appropriate. While the Chinese government points its finger at overgrazing, some experts believe that it was the government’s prior actions in this region (fencing land and supporting agriculture over pastoralism) and ongoing mining pollution that has pushed this region away from a sustainable equilibrium and towards desertification. Adding flame to the fire, ecologists and hydrologists wonder whether the Great Green Wall’s trees will grow successfully or just deplete the water supply further. Meanwhile, recent climate studies provide an alternative explanation to these land-use centric arguments, suggesting that non-local climatic causes such as global warming and decreasing East Asian monsoon strength may explain the increasing aridity.

In this quagmire of rapid environmental change and scientific uncertainty one thing is clear: it is critical for there to be a robust dialogue between scientists and policy makers for Inner Mongolia, and the dry climates in Asia at large, to have a chance at developing sustainably.

 

baldwin_j-175x200

Jane is a PhD candidate in Princeton’s Atmospheric and Oceanic Sciences program in joint with NOAA’s Geophysical Fluid Dynamics Laboratory, where she is advised by Dr. Gabriel Vecchi. Her research employs a combination of dynamical climate models and earth observations to elucidate the ties between global and regional climate, and move towards useful predictions of climate change at regional levels.