Inside a Solar Energy Company

Written by Molly Chaney

Finding an internship as a Ph.D. student is hard. Finding one at a company you have legitimate interest in is even harder. In search of a more refined answer to the dreaded question, “so what do you want to do after you get your Ph.D.?” I started looking for opportunities in what is very broadly and vaguely referred to as “industry.” I stepped into Dillon gym on a muggy August day in the only pair of dress pants I own and looked around. Finance, biotech, management consulting, and oil & gas companies filled the room with tables and recruiters.

After talking to what turned out to be a bunch of dead ends that didn’t excite me much, I decided to check out one last table before leaving. A far cry from the multi-table, multi-recruiter teams with tons of free swag to give away like Exxon and Shell, Momentum Solar had a table with some flyers, business cards, and one recruiter. I didn’t wait in line or crowd around like at the others, and immediately got to talking with Peter Clark. What I remember most was his message that they were simply looking for “intellectual horsepower,” something that the CFO would repeat to a group of students who went to their South Plainfield HQ for an information session later that school year. I came away from my conversation not exactly sure what I would be doing if I worked there, but excited about joining a small, quickly growing company founded in sustainability.

At that info session some months later, I was impressed that the CFO, Sung Lee, took the time out of his schedule to speak directly with the group of prospective interns, and gave us all some background about where Momentum has been, and where it’s going:

Momentum Solar is a residential solar power installation company that was founded in New Jersey in 2009 by Cameron Christensen and Arthur Souritzidis. In 2011, they had just four employees. In 2013, six. They were ranked on the Inc. 5000 most successful companies in 2016 (with 250 employees), Inc. 500 fastest growing companies in 2017 (700 employees), and Inc. 5000 most successful again in 2018 (950 employees). They doubled their revenue from 2017-2018, and doubled again 2018-2019. Currently, Momentum has operations in seven states, from California to Connecticut, and shows no signs of slowing down. The solar industry as a whole also shows promising trends: since 2008, solar installations in the US have grown 35-fold, and since 2014, the cost of solar panels has dropped by nearly 50%.

After hearing this pitch, we toured the office, which, while full of diligent employees in front of huge screens, also boasts two ping pong tables and a darts board. The energy in the space was palpable, and Sung’s enthusiasm was contagious: I was sold.

Fast forward a couple months, and I was about to have my first day there. I *still* didn’t know exactly what I would be doing. On day one, my supervisor presented me with a few different projects I could choose from. While I wasn’t using the specific skills related to my research area here at Princeton, I was using crucial skills I developed along the way during my PhD research: programming and exploratory data analysis. I jumped right in to their fast-paced, quick-turnaround style of work, and had check-ins with Sung nearly every day. He made a concerted effort to include me and all the other interns on calls and in meetings, even if it was just to observe. The main project I worked on was writing a program to optimize appointment scheduling and driving routes, with the goals of improving efficiency from both a time and a fossil fuel standpoint: a great example of a sustainability practice helping a company’s bottom line.

People had told me before starting my Ph.D. that, unless I was planning on taking the academic route, the most valuable things I would learn would not be in my dissertation, but skills developed along the way. This rang true during my first professional experience in industry. Problem solving and independence were probably the two most valuable qualities that a graduate student can bring to an internship. Somewhat unexpectedly, teaching skills proved useful as well: it wasn’t enough to prove a point through a certain statistical test; it was crucial that a room full of people with diverse backgrounds understood what a certain figure or result meant.

Momentum continues to grow, regularly setting and breaking records. To date, Momentum has installed 174 MW of residential solar energy, enough capacity to power the equivalent of more than 33,000 average American homes. I know my experience was unique: I was treated as an equal, was mentored thoughtfully and intentionally, and had regular interaction with corporate-level executives. Working there was rewarding, and Momentum’s success is a glimmer of hope during an ever-worsening climate crisis. 

Graduate and undergraduate students who are interested in internship opportunities with Momentum Solar should contact Peter Clark, Director of Talent Acquisition, at pclark@momentumsolar.com.

Sources: energy.gov

Molly Chaney is a fifth year Ph.D. candidate in Civil & Environmental Engineering. Advised by Jim Smith, her research focuses on the use of polarimetric radar to study tropical cyclones and other extreme weather events. Originally from Chicago, she is a die-hard Cubs (and deep dish pizza) fan. In her spare time she enjoys cuddling her dog, playing videogames, and indulging in good food and wine with her friends and family. If you have more questions about her experience at Momentum Solar you can contact her at mchaney@princeton.edu.

Integrating Renewable Energy Part 2: Electricity Market & Policy Challenges

Written by Kasparas Spokas

The rising popularity and falling capital costs of renewable energy make its integration into the electricity system appear inevitable. However, major challenges remain. In part one of our ‘integrating renewable energy’ series, we introduced key concepts of the physical electricity system and some of the physical challenges of integrating variable renewable energy. In this second instalment, we introduce how electricity markets function and relevant policies for renewable energy development.

Modern electricity markets were first mandated by the Federal Energy Regulatory Commission (FERC) in the United States at the turn of millennium to allow market forces to drive down the price of electricity. Until then, most electricity systems were managed by regulated vertically-integrated utilities. Today, these markets serve two-thirds of the country’s electricity demand (Figure 1) and the price of wholesale electricity in these regions is historically low due to cheap natural gas prices and subsidized renewable energy deployment.

The primary objective of electricity markets is to provide reliable electricity at least cost to consumers. This objective can be further broken down into several sub-objectives. The first is short-run efficiency: making the best of the existing electricity infrastructure. The second is long-run efficiency: ensuring that the market provides the proper incentives for investment in electricity system infrastructure to guarantee to satisfy electricity demand in the future. Other objectives are fairness, transparency, and simplicity. This is no easy task; there is uncertainty in both supply and demand of electricity and many physical constraints need to be considered.

While the specific structure of electricity markets varies slightly by region, they all provide a competitive market structure where electricity generators can compete to sell their electricity. The governance of these markets can be broken down into several actors: the regulator, the board, participant committees, an independent market monitor, and a system operator. FERC is the regulator for all interstate wholesale electricity markets (all except ERCOT in Texas). In addition, reliability standards and regulations are set by the North American Electric Reliability Council (NERC), which FERC gave authority in 2006. Lastly, markets are operated by independent system operators (ISOs) or Regional Transmission Operators (RTOs) (Figure 1). In tandem, regulations set by FERC, NERC, and system operators drive the design of wholesale markets.

Wholesale energy market ISO/RTO locations (colored areas) and vertically-integrated utilities (tanned area). Source: https://isorto.org/

Before we get ahead of ourselves, let’s first learn about how electricity markets work. A basic electricity market functions as such: electricity generators (i.e. power plants) bid to generate an amount of electricity into a centralized market. In a perfectly competitive market, the price of these bids is based on the costs of an individual power plant to generate electricity. Generally, costs are grouped by technology and organized along a “supply stack” (Figure 2). Once all bids are placed, the ISO/RTO accepts the cheapest assortment of generation bids that satisfies electricity demand while also meeting physical system and reliability constraints (Figure 2a). The price of the most expensive accepted bid becomes the market-clearing price and sets the price of electricity that all accepted generators receive as compensation (Figure 2a). In reality it is a bit more complicated: the ISO/RTOs operate day-ahead, real-time, and ancillary services markets and facilitate forward contract trading to better orchestrate the system and lower physical and financial risks.

Figure 2. Schematics of electricity supply stacks (a) before low natural gas prices, (b) after natural gas prices declined, (c) after renewable deployment.

Because real electricity markets are not completely efficient and competitive (due to a number of reasons), some regions have challenges providing enough incentives for the long-run investment objective. As a result, several ISO/RTOs have designed an additional “capacity market.” In capacity markets, power plants bid for the ability to generate electricity in the future (1-3 years ahead). If the generator clears this market, it will receive extra compensation for the ability to generate electricity in the future (regardless of whether it is called upon to generate electricity) or will face financial penalties if it cannot. While experts continue to debate the merits of these secondary capacity markets, some ISO/RTOs argue capacity markets provide the necessary additional financial incentives to ensure a reliable electricity system in the future.

Sound complicated? It is! Luckily, ISO/RTOs have sophisticated tools to continuously model the electricity system and orchestrate the purchasing and transmission of wholesale electricity. Two key features of electricity markets are time and location. First, market clearing prices are time dependent because of continuously changing demand and supply. During periods of high electricity demand, prices can rise because more expensive electricity generators are needed to meet demand, which increases the settlement price (Figure 2a). In extreme cases, these are referred to as price spikes. Second, market-clearing prices are regional because of electricity transmission constraints. In regions where supply is low and the transmission capacity to import electricity from elsewhere is limited, electricity prices can increase even more.

Several recent developments have complicated the economics of generating electricity in wholesale markets. First, low natural gas prices and the greater efficiency of combined cycle power plants have resulted in low electricity bids, restructuring the supply stack and lowering market settlement prices (Figure 2b). Second, the introduction of renewable power plants, which have almost-zero operating costs, introduce almost-zero electricity market bids. As such, renewables fall at the beginning of the supply stack and push other technologies towards the right (higher-demand periods that are less utilized), further depressing settlement prices (Figure 2c). A recent study by the National Renewable Energy Laboratory expects these trends to continue with increasing renewable deployment.

In combination, these developments have reduced revenues and challenged the operation of less competitive generation technologies, such as coal and nuclear energy, and elicited calls for government intervention to save financial investments. While the shutdown of coal plants is welcome news for climate advocates, nuclear power provided 60% of the U.S. carbon-free electricity in 2016. Several states have already instated credits or subsidies to prevent these low-emission power plants from going bankrupt. However, some experts argue that the retirement of uneconomic resources is a welcome indication that markets are working properly.

As traditional fossil-fuel power plants struggle to remain in operation, the development of new renewable energy continues to thrive. This development has been aided by both capital cost reductions and federal- and state-level policies that provide out-of-market economic benefits. To better achieve climate goals, some have argued that states need to write policies that align with wholesale market structures. Proposed mechanisms include in-market carbon pricing, such as a carbon tax or stronger cap-and-trade programs, and additional clean-energy markets. Until now however, political economy constraints have limited policies to weak cap-and-trade programs, investment and production tax credits, and renewable portfolio standards.

While renewable energy advocates support such policies, system operators and private investors argue these out-of-market policies could potentially distort wholesale electricity markets by suppressing prices and imposing regulatory risks on investors. Importantly, they argue that this leads to inefficient resource investment decisions and reduced competition that ultimately increases costs for consumers. As a result, several ISO/RTOs are attempting to reform electricity capacity market rules to satisfy these complaints but are having difficulty finding a solution that satisfies all stakeholders. How future policies will be dealt with by FERC, operators and stakeholders remains to be resolved.

As states continue to instate new renewable energy mandates and technologies yet to be well-integrated with wholesale markets, such as battery storage, continue to evolve and show promise, wholesale market structures and policies will need to adapt. In the end, the evolution of electricity market rules and policies will depend on a complex interplay between technological innovation, stakeholder engagement, regulation, and politics. Exciting!

 

Kasparas Spokas is a Ph.D. candidate in the Civil & Environmental Engineering Department and a policy-fellow in the Woodrow Wilson School of Public & International Affairs at Princeton University. Broadly, he is interested in the challenge of developing low-emissions energy systems from a techno-economic perspective. Follow him on Twitter @KSpokas.

Integrating Renewable Energy Part 1: Physical Challenges

Written by Kasparas Spokas

Meeting climate change mitigation targets will require rapidly reducing greenhouse gas emissions from electricity generation, which is responsible for a quarter of all U.S. greenhouse gas emissions. The prospect of electrifying other sectors, such as transportation, further underscores the necessity to reduce electricity emissions to meet climate goals. To address this, much attention and political capital have been spent on developing renewable energy technologies, such as wind or solar power. This is partly because recent reductions of the capital costs of these technologies and government incentives have made this strategy cost-effective. Another reason is simply that renewable energy technologies are popular. Today, news articles about falling renewable energy costs and increasing renewable mandates are not uncommon.

While capital cost reductions and popularity are key to driving widespread deployment of renewables, there remain significant challenges for integrating renewables into our electricity system. This two-part series introduces key concepts of electricity systems and identifies the challenges and opportunities of integrating renewables.

Figure 1. Schematic of the physical elements of electricity systems. Source: https://www.eia.gov/energyexplained/index.php?page=electricity_delivery

What are electricity systems? Physically, they are composed of four main interacting elements: electricity generation, transmission grids, distribution grids, and end users (Figure 1). In addition to the physical elements, regulatory and governance structures guide the operation and evolution of electricity systems (these are the focus of part two in this series). These include the U.S. Federal Regulatory Commission (FERC), the North American Electric Reliability Council (NERC), and numerous state-level policies and laws. The interplay between the physical and regulatory elements has guided electricity systems to where they are today.

In North America, the electricity system is segmented into three interconnected regions (Figure 2). These regions are linked by only a few low-capacity transmission wires and often operate independently. These regions are then further segmented into areas where independent organizations operate wholesale electricity markets and areas where federally-regulated vertically-integrated utilities manage all the physical elements (Figure 2). Roughly two-thirds of the U.S. electricity demand is now located in wholesale electricity markets. Lastly, some of these broad areas are further subdivided into smaller balancing authorities that are responsible for supplying electricity to meet demand under regulations set by FERC and NERC.

Figure 2. Left: North American Electric Reliability Corporation Interconnections. Right: Wholesale market areas (colored area) and vertically-integrated utilities areas (tanned area). Source: https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/NERC_Interconnection_1A.pdf & https://isorto.org/

Electricity systems’ main objective is to orchestrate electricity generation, transmission and distribution to maintain instantaneous balance of supply and continuously changing demand. To maintain this balance, the coordination of electricity system operations is vital. Electricity systems need to provide electricity where and when it is needed.

Historically, electricity systems have been built to suit conventional electricity generation technologies, such as coal, oil, natural gas, nuclear, and hydropower. These technologies rely on fuel that can be transported to power plants, allowing them to be sited in locations where electricity demand is present. The one exception is hydropower, which requires that plants are sited along rivers. In addition, the timing of electricity generation at these power plants can be controlled. The ability to control where and when electricity is generated simplifies the process by which an electricity system is orchestrated.

Enter solar and wind power. These technologies lack the two features of conventional electricity generation technologies, the ability to control where and when to generate electricity, and make the objective of instantaneously balancing supply and demand even more challenging. For starters, solar and wind technologies are dependent on natural resources, which can limit where they are situated. The areas that are best for sun and wind do not always coincide with where electricity demand is highest. As an example, the most productive region for on-shore wind stretches along a “wind-belt” through the middle of U.S. (Figure 3). For solar, the sparsely populated southwest region presents the most attractive sunny skies (Figure 3). As of now, long-distance transmission infrastructure to transport electricity from renewable resource-rich regions to high electricity demand regions is limited.

Figure 3. Maps of wind speed (left) and solar energy potential (right) in the U.S. Source: https://www.nrel.gov/

In addition, the timing of electricity generation from wind and solar cannot be controlled: solar panels only produce electricity when the sun is shining and wind turbines only function when the wind is blowing. Therefore, the scaling up of renewables alone would result in instances where supply of renewables does not equal customer demand (Figure 4). When renewable energy production suddenly drops (due to cloud cover or a lull in wind), the electricity system is required to coordinate other generators to quickly make up the difference. In the inverse situation where renewable energy generation suddenly increases, electricity generators often curtail the electricity to avoid dealing with the variability. The challenge of forecasting how much sun and wind there will be in the future adds more uncertainty to the enterprise.

Figure 4. Electricity demand and wind generation in Texas. The wind generation is scaled up to 100% of demand to emphasize possible supply-demand mismatches. Source: http://www.ercot.com/gridinfo/generation

A well-known challenge in solar-rich regions is the “duck-curve” (Figure 5). The typical duck-curve (named after the fact that the curve resembles a duck) depicts the electricity demand after subtracting the amount of solar generation at each hour of the day. In other words, the graph depicts the electricity demand that needs to be met with power plants other than solar, called “net-load.” During the day, the sun shines and solar panels generate electricity, resulting in low net-loads. However, as the sun sets and people turn on electric appliances after returning home from work, the net load increases quickly. Electricity systems often respond by calling upon natural gas power plants to quickly ramp up their generation. Unfortunately, natural gas power plants that can quickly increase their output are less efficient and have higher emission rates than slower natural gas power plants.

 

Figure 5. The original duck-curve presented by the California Independent System Operator. Source: http://www.caiso.com/

These challenges result in economic costs. A study about California concluded that increasing renewable deployment could result in only modest emission reductions at very high abatement costs ($300-400/ton of CO2). This is because the added variability and uncertainty of more renewables will require higher-emitting and quickly-ramping natural gas power plants to balance sudden electricity demand and supply imbalances. In addition, more renewable power will be curtailed in order to maintain stability (Figure 6), reducing the return on investment and increasing costs.

Figure 6. Renewable curtailment (MWh) and cumulative solar photovoltaic (PV) and wind power capacity in California from 2014 to 2018. Source: CAISO

Although solar and wind power do pose these physical challenges, technological advances and electricity system design enhancements can facilitate their integration. Several key strategies for integrating renewables will be: the development of economic energy storage that can store energy for later use, demand response technologies that can help consumers reduce electricity demand during periods of high net-load, and expansion of long-distance electricity transmission to transport electricity from natural resource (sun and wind) rich areas to electricity demand areas (cities). Which solutions succeed will depend on the interplay of future innovation, state and federal incentives, and electricity market design and regulation improvements. As an example, regulations that facilitate long-distance electricity transmission could significantly reduce technical challenges of integrating renewables using current-day technologies. To ensure efficient integration of renewable energy, regulatory and energy market reform will likely be necessary. For more about this topic, check out part two of our series here!

 

Kasparas Spokas is a Ph.D. candidate in the Civil & Environmental Engineering Department and a policy-fellow in the Woodrow Wilson School of Public & International Affairs at Princeton University. Broadly, he is interested in the challenge of developing low-emissions energy systems from a techno-economic perspective. Follow him on Twitter @KSpokas.